BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30617468)

  • 21. Noninvasive measurement of forearm blood flow and oxygen consumption by near-infrared spectroscopy.
    De Blasi RA; Ferrari M; Natali A; Conti G; Mega A; Gasparetto A
    J Appl Physiol (1985); 1994 Mar; 76(3):1388-93. PubMed ID: 8005887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Active hyperemia and vascular conductance differ between men and women for an isometric fatiguing contraction.
    Hunter SK; Schletty JM; Schlachter KM; Griffith EE; Polichnowski AJ; Ng AV
    J Appl Physiol (1985); 2006 Jul; 101(1):140-50. PubMed ID: 16601303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Near-infrared spectroscopy of the thenar eminence to estimate forearm blood flow.
    Woinarski NC; Suzuki S; Lipcsey M; Lumsden N; Chin-Dusting J; Schneider AG; Bailey M; Bellomo R
    Crit Care Resusc; 2013 Dec; 15(4):323-6. PubMed ID: 24289515
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the wrist cuff in forearm plethysmography.
    Lenders J; Janssen GJ; Smits P; Thien T
    Clin Sci (Lond); 1991 May; 80(5):413-7. PubMed ID: 1851680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Forearm blood flow measurements using computerized R-wave triggered strain-gauge venous occlusion plethysmography: unilateral vs. bilateral measurements.
    Kamper AM; de Craen AJ; Blauw GJ
    Clin Physiol; 2001 Sep; 21(5):524-7. PubMed ID: 11576152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Venous occlusion plethysmography reduces arterial diameter and flow velocity.
    Hiatt WR; Huang SY; Regensteiner JG; Micco AJ; Ishimoto G; Manco-Johnson M; Drose J; Reeves JT
    J Appl Physiol (1985); 1989 May; 66(5):2239-44. PubMed ID: 2745287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Venous occlusion plethysmography versus Doppler ultrasound in the assessment of leg blood flow during calf exercise.
    Green S; Thorp R; Reeder EJ; Donnelly J; Fordy G
    Eur J Appl Physiol; 2011 Aug; 111(8):1889-900. PubMed ID: 21234593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Post-exercise hyperemia after ischemic and non-ischemic isometric handgrip exercise.
    Osada T; Katsumura T; Murase N; Sako T; Higuchi H; Kime R; Hamaoka T; Shimomitsu T
    J Physiol Anthropol Appl Human Sci; 2003 Nov; 22(6):299-309. PubMed ID: 14646265
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vasoconstrictor responsiveness in contracting human muscle: influence of contraction frequency, contractile work, and metabolic rate.
    Kruse NT; Hughes WE; Ueda K; Casey DP
    Eur J Appl Physiol; 2017 Aug; 117(8):1697-1706. PubMed ID: 28624852
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reproducibility of forearm vasodilator response to intra-arterial infusion of calcitonin gene-related peptide assessed by venous occlusion plethysmography.
    Vanmolkot FH; de Hoon JN
    Br J Clin Pharmacol; 2005 Apr; 59(4):387-97. PubMed ID: 15801933
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Venous volume and compliance in the calf and forearm does not change after acute endurance exercise performed at continuous or interval workloads.
    Iimura Y; Saito M; Oue A
    Physiol Rep; 2022 Jun; 10(11):e15347. PubMed ID: 35673801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Basal and exercise-induced skeletal muscle blood flow is augmented in type I diabetes mellitus.
    Skyrme-Jones RA; Berry KL; O'Brien RC; Meredith IT
    Clin Sci (Lond); 2000 Jan; 98(1):111-20. PubMed ID: 10600665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sex differences in time to task failure and blood flow for an intermittent isometric fatiguing contraction.
    Hunter SK; Griffith EE; Schlachter KM; Kufahl TD
    Muscle Nerve; 2009 Jan; 39(1):42-53. PubMed ID: 19086076
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Failure of impedance plethysmography to follow exercise-induced changes in limb blood flow.
    Hughson RL
    Clin Sci (Lond); 1988 Jul; 75(1):41-6. PubMed ID: 3409623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological response in the forearm during and after isometric intermittent handgrip.
    Byström SE; Kilbom A
    Eur J Appl Physiol Occup Physiol; 1990; 60(6):457-66. PubMed ID: 2390985
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Forearm blood flow measured by venous occlusion plethysmography in healthy subjects and in women with postmastectomy oedema.
    Stanton AW; Holroyd B; Northfield JW; Levick JR; Mortimer PS
    Vasc Med; 1998; 3(1):3-8. PubMed ID: 9666525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brachial artery characteristics and micro-vascular filtration capacity in rock climbers.
    Thompson EB; Farrow L; Hunt JE; Lewis MP; Ferguson RA
    Eur J Sport Sci; 2015; 15(4):296-304. PubMed ID: 25068834
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exercise-induced vasodilation in forearm circulation of normal subjects and patients with congestive heart failure: role of endothelium-derived nitric oxide.
    Katz SD; Krum H; Khan T; Knecht M
    J Am Coll Cardiol; 1996 Sep; 28(3):585-90. PubMed ID: 8772743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Active forearm blood flow adjustments to handgrip exercise in young and older healthy men.
    Jasperse JL; Seals DR; Callister R
    J Physiol; 1994 Jan; 474(2):353-60. PubMed ID: 8006820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computerized evaluation of the peripheral blood flow during maximal vasodilatation in humans using venous occlusion plethysmography.
    Gretzer I; Inacio J; Olsson A
    Clin Physiol; 1995 Mar; 15(2):131-41. PubMed ID: 7600733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.