These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 30617495)

  • 1. Radiomic analysis of imaging heterogeneity in tumours and the surrounding parenchyma based on unsupervised decomposition of DCE-MRI for predicting molecular subtypes of breast cancer.
    Fan M; Zhang P; Wang Y; Peng W; Wang S; Gao X; Xu M; Li L
    Eur Radiol; 2019 Aug; 29(8):4456-4467. PubMed ID: 30617495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiomic Analysis of Pharmacokinetic Heterogeneity Within Tumor Based on the Unsupervised Decomposition of Dynamic Contrast-Enhanced MRI for Predicting Histological Characteristics of Breast Cancer.
    Zhang L; Fan M; Wang S; Xu M; Li L
    J Magn Reson Imaging; 2022 Jun; 55(6):1636-1647. PubMed ID: 34773446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumour heterogeneity revealed by unsupervised decomposition of dynamic contrast-enhanced magnetic resonance imaging is associated with underlying gene expression patterns and poor survival in breast cancer patients.
    Fan M; Xia P; Liu B; Zhang L; Wang Y; Gao X; Li L
    Breast Cancer Res; 2019 Oct; 21(1):112. PubMed ID: 31623683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DCE-MRI texture analysis with tumor subregion partitioning for predicting Ki-67 status of estrogen receptor-positive breast cancers.
    Fan M; Cheng H; Zhang P; Gao X; Zhang J; Shao G; Li L
    J Magn Reson Imaging; 2018 Jul; 48(1):237-247. PubMed ID: 29219225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of dynamic contrast-enhanced magnetic resonance imaging and T2-weighted imaging radiomic features by a canonical correlation analysis-based feature fusion method to predict histological grade in ductal breast carcinoma.
    Fan M; Liu Z; Xie S; Xu M; Wang S; Gao X; Li L
    Phys Med Biol; 2019 Oct; 64(21):215001. PubMed ID: 31470420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiomic analysis of DCE-MRI for prediction of response to neoadjuvant chemotherapy in breast cancer patients.
    Fan M; Wu G; Cheng H; Zhang J; Shao G; Li L
    Eur J Radiol; 2017 Sep; 94():140-147. PubMed ID: 28712700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiomic analysis reveals DCE-MRI features for prediction of molecular subtypes of breast cancer.
    Fan M; Li H; Wang S; Zheng B; Zhang J; Li L
    PLoS One; 2017; 12(2):e0171683. PubMed ID: 28166261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing pathological complete response prediction in breast cancer: the role of dynamic characterization of DCE-MRI and its association with tumor heterogeneity.
    Zhang X; Teng X; Zhang J; Lai Q; Cai J
    Breast Cancer Res; 2024 May; 26(1):77. PubMed ID: 38745321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion-weighted imaging features of breast tumours and the surrounding stroma reflect intrinsic heterogeneous characteristics of molecular subtypes in breast cancer.
    Fan M; He T; Zhang P; Cheng H; Zhang J; Gao X; Li L
    NMR Biomed; 2018 Feb; 31(2):. PubMed ID: 29244222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep matrix factorization framework for identifying underlying tissue-specific patterns of DCE-MRI: applications for molecular subtype classification in breast cancer.
    Fan M; Yuan W; Liu W; Gao X; Xu M; Wang S; Li L
    Phys Med Biol; 2021 Dec; 66(24):. PubMed ID: 34787109
    [No Abstract]   [Full Text] [Related]  

  • 11. Preoperative prediction of sentinel lymph node metastasis in breast cancer by radiomic signatures from dynamic contrast-enhanced MRI.
    Liu C; Ding J; Spuhler K; Gao Y; Serrano Sosa M; Moriarty M; Hussain S; He X; Liang C; Huang C
    J Magn Reson Imaging; 2019 Jan; 49(1):131-140. PubMed ID: 30171822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiomic analysis of HTR-DCE MR sequences improves diagnostic performance compared to BI-RADS analysis of breast MR lesions.
    Perre SV; Duron L; Milon A; Bekhouche A; Balvay D; Cornelis FH; Fournier L; Thomassin-Naggara I
    Eur Radiol; 2021 Jul; 31(7):4848-4859. PubMed ID: 33404696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intratumor partitioning and texture analysis of dynamic contrast-enhanced (DCE)-MRI identifies relevant tumor subregions to predict pathological response of breast cancer to neoadjuvant chemotherapy.
    Wu J; Gong G; Cui Y; Li R
    J Magn Reson Imaging; 2016 Nov; 44(5):1107-1115. PubMed ID: 27080586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients.
    Tahmassebi A; Wengert GJ; Helbich TH; Bago-Horvath Z; Alaei S; Bartsch R; Dubsky P; Baltzer P; Clauser P; Kapetas P; Morris EA; Meyer-Baese A; Pinker K
    Invest Radiol; 2019 Feb; 54(2):110-117. PubMed ID: 30358693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generative adversarial network-based super-resolution of diffusion-weighted imaging: Application to tumour radiomics in breast cancer.
    Fan M; Liu Z; Xu M; Wang S; Zeng T; Gao X; Li L
    NMR Biomed; 2020 Aug; 33(8):e4345. PubMed ID: 32521567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in tumour heterogeneity based on dynamic contrast-enhanced MRI between tumour and peritumoural stroma for predicting Ki-67 status of invasive ductal carcinoma.
    He X; Zhou J; Ye S; Cheng Q; Miao H; Xu N; Li J; Pan Z; Cheng J; Wang M
    Clin Radiol; 2021 Jun; 76(6):470.e13-470.e22. PubMed ID: 33648758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI.
    Chen W; Giger ML; Bick U; Newstead GM
    Med Phys; 2006 Aug; 33(8):2878-87. PubMed ID: 16964864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer.
    Abdollahi H; Mofid B; Shiri I; Razzaghdoust A; Saadipoor A; Mahdavi A; Galandooz HM; Mahdavi SR
    Radiol Med; 2019 Jun; 124(6):555-567. PubMed ID: 30607868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D DCE-MRI Radiomic Analysis for Malignant Lesion Prediction in Breast Cancer Patients.
    Militello C; Rundo L; Dimarco M; Orlando A; Woitek R; D'Angelo I; Russo G; Bartolotta TV
    Acad Radiol; 2022 Jun; 29(6):830-840. PubMed ID: 34600805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of spatiotemporal changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions.
    Milenković J; Hertl K; Košir A; Zibert J; Tasič JF
    Artif Intell Med; 2013 Jun; 58(2):101-14. PubMed ID: 23548472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.