These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30617633)

  • 21. Production of rhamnolipids by semi-solid-state fermentation with Pseudomonas aeruginosa RG18 for heavy metal desorption.
    Wu J; Zhang J; Wang P; Zhu L; Gao M; Zheng Z; Zhan X
    Bioprocess Biosyst Eng; 2017 Nov; 40(11):1611-1619. PubMed ID: 28803337
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.
    Zhao F; Zhou J; Han S; Ma F; Zhang Y; Zhang J
    World J Microbiol Biotechnol; 2016 Apr; 32(4):54. PubMed ID: 26925616
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa.
    Hori K; Marsudi S; Unno H
    Biotechnol Bioeng; 2002 Jun; 78(6):699-707. PubMed ID: 11992535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2.
    Chen SY; Wei YH; Chang JS
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):67-74. PubMed ID: 17457541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Valorization of agro-industrial wastes towards the production of rhamnolipids.
    Gudiña EJ; Rodrigues AI; de Freitas V; Azevedo Z; Teixeira JA; Rodrigues LR
    Bioresour Technol; 2016 Jul; 212():144-150. PubMed ID: 27092993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874.
    Syldatk C; Lang S; Matulovic U; Wagner F
    Z Naturforsch C Biosci; 1985; 40(1-2):61-7. PubMed ID: 3922147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rhamnolipid production by Pseudomonas aeruginosa grown on membranes of bacterial cellulose supplemented with corn bran water extract.
    Conceição KS; de Alencar Almeida M; Sawoniuk IC; Marques GD; de Sousa Faria-Tischer PC; Tischer CA; Vignoli JA; Camilios-Neto D
    Environ Sci Pollut Res Int; 2020 Aug; 27(24):30222-30231. PubMed ID: 32451891
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source.
    George S; Jayachandran K
    Appl Biochem Biotechnol; 2009 Sep; 158(3):694-705. PubMed ID: 18716921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization and characterization of rhamnolipids produced by Pseudomonas aeruginosa ATCC 9027 using molasses as a substrate.
    Braz LM; Salazar-Bryam AM; Andrade GSS; Tambourgi EB
    World J Microbiol Biotechnol; 2022 Dec; 39(2):51. PubMed ID: 36544076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodiesel byproduct bioconversion to rhamnolipids: Upstream aspects.
    Salazar-Bryam AM; Lovaglio RB; Contiero J
    Heliyon; 2017 Jun; 3(6):e00337. PubMed ID: 28721396
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of biosurfactant from a new and promising strain of Pseudomonas aeruginosa PA1.
    Santa Anna LM; Sebastian GV; Pereira N; Alves TL; Menezes EP; Freire DM
    Appl Biochem Biotechnol; 2001; 91-93():459-67. PubMed ID: 11963874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa.
    Marsudi S; Unno H; Hori K
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):955-61. PubMed ID: 18299827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone.
    Ozdal M; Gurkok S; Ozdal OG
    3 Biotech; 2017 Jun; 7(2):117. PubMed ID: 28567629
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2.
    Chen SY; Lu WB; Wei YH; Chen WM; Chang JS
    Biotechnol Prog; 2007; 23(3):661-6. PubMed ID: 17461551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Designer rhamnolipids by reduction of congener diversity: production and characterization.
    Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM
    Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of waste canola oil as a low-cost substrate for rhamnolipid production using Pseudomonas aeruginosa.
    Pérez-Armendáriz B; Cal-Y-Mayor-Luna C; El-Kassis EG; Ortega-Martínez LD
    AMB Express; 2019 May; 9(1):61. PubMed ID: 31062183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a New Rhamnolipid Biosurfactant Complex from
    Shreve GS; Makula R
    Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31861084
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of rhamnolipid production by a halotolerant novel strain of Pseudomonas aeruginosa.
    Varjani S; Upasani VN
    Bioresour Technol; 2019 Sep; 288():121577. PubMed ID: 31174086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent.
    Nalini S; Parthasarathi R
    Bioresour Technol; 2014 Dec; 173():231-238. PubMed ID: 25305653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates.
    Chayabutra C; Wu J; Ju LK
    Biotechnol Bioeng; 2001 Jan; 72(1):25-33. PubMed ID: 11084590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.