BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30617726)

  • 1. Modulating heterologous pathways and optimizing fermentation conditions for biosynthesis of kaempferol and astragalin from naringenin in Escherichia coli.
    Pei J; Chen A; Dong P; Shi X; Zhao L; Cao F; Tang F
    J Ind Microbiol Biotechnol; 2019 Feb; 46(2):171-186. PubMed ID: 30617726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic Engineering of Escherichia coli for Astragalin Biosynthesis.
    Pei J; Dong P; Wu T; Zhao L; Fang X; Cao F; Tang F; Yue Y
    J Agric Food Chem; 2016 Oct; 64(42):7966-7972. PubMed ID: 27730814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regiospecific modifications of naringenin for astragalin production in Escherichia coli.
    Malla S; Pandey RP; Kim BG; Sohng JK
    Biotechnol Bioeng; 2013 Sep; 110(9):2525-35. PubMed ID: 23568509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Optimization of an In Vitro Multienzyme Synthetic System for Production of Kaempferol from Naringenin.
    Zhang Z; He Y; Huang Y; Ding L; Chen L; Liu Y; Nie Y; Zhang X
    J Agric Food Chem; 2018 Aug; 66(31):8272-8279. PubMed ID: 30019587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae.
    Duan L; Ding W; Liu X; Cheng X; Cai J; Hua E; Jiang H
    Microb Cell Fact; 2017 Sep; 16(1):165. PubMed ID: 28950867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of Naringenin and Kaempferol through Pathway Refactoring in the Endophyte
    Wu M; Gong DC; Yang Q; Zhang MQ; Mei YZ; Dai CC
    ACS Synth Biol; 2021 Aug; 10(8):2030-2039. PubMed ID: 34251173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in Escherichia coli.
    Wu J; Zhou T; Du G; Zhou J; Chen J
    PLoS One; 2014; 9(7):e101492. PubMed ID: 24988485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sustainable and efficient strategy for bioconverting naringin to L-rhamnose, 2R-naringenin, and kaempferol.
    Lu M; Liu S; Liu J; Zhao L; Pei J
    Food Chem; 2024 Jul; 447():138942. PubMed ID: 38484542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization of flavonol synthase from poplar and its application to the synthesis of 3-O-methylkaempferol.
    Kim BG; Joe EJ; Ahn JH
    Biotechnol Lett; 2010 Apr; 32(4):579-84. PubMed ID: 20033832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Engineering of Saccharomyces cerevisiae for De Novo Production of Kaempferol.
    Lyu X; Zhao G; Ng KR; Mark R; Chen WN
    J Agric Food Chem; 2019 May; 67(19):5596-5606. PubMed ID: 30957490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentation and Metabolic Pathway Optimization to De Novo Synthesize (2S)-Naringenin in
    Zhou S; Hao T; Zhou J
    J Microbiol Biotechnol; 2020 Oct; 30(10):1574-1582. PubMed ID: 32830192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing yeast for high-level production of kaempferol and quercetin.
    Tartik M; Liu J; Mohedano MT; Mao J; Chen Y
    Microb Cell Fact; 2023 Apr; 22(1):74. PubMed ID: 37076829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of kaempferol 3-O-rhamnoside from glucose using engineered Escherichia coli.
    Yang SM; Han SH; Kim BG; Ahn JH
    J Ind Microbiol Biotechnol; 2014 Aug; 41(8):1311-8. PubMed ID: 24879482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of Chalcone Synthase Activity and High-Efficiency Fermentative Production of (2
    Tong Y; Li N; Zhou S; Zhang L; Xu S; Zhou J
    ACS Synth Biol; 2024 May; 13(5):1454-1466. PubMed ID: 38662928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster.
    Miyahisa I; Kaneko M; Funa N; Kawasaki H; Kojima H; Ohnishi Y; Horinouchi S
    Appl Microbiol Biotechnol; 2005 Sep; 68(4):498-504. PubMed ID: 15770480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of Four Flavonoid
    Chong Y; Kim BG; Park YJ; Yang Y; Lee SW; Lee Y; Ahn JH
    J Agric Food Chem; 2023 Apr; 71(13):5302-5313. PubMed ID: 36952620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of metabolic pathway gene copy numbers on the biosynthesis of (2S)-naringenin in Saccharomyces cerevisiae.
    Li H; Gao S; Zhang S; Zeng W; Zhou J
    J Biotechnol; 2021 Jan; 325():119-127. PubMed ID: 33186660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosensor-driven, model-based optimization of the orthogonally expressed naringenin biosynthesis pathway.
    Van Brempt M; Peeters AI; Duchi D; De Wannemaeker L; Maertens J; De Paepe B; De Mey M
    Microb Cell Fact; 2022 Mar; 21(1):49. PubMed ID: 35346204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Engineering of
    Li G; Zhu F; Wei P; Xue H; Chen N; Lu B; Deng H; Chen C; Yin X
    Microorganisms; 2022 Mar; 10(3):. PubMed ID: 35336203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved production of 1-deoxynojirymicin in Escherichia coli through metabolic engineering.
    Rayamajhi V; Dhakal D; Chaudhary AK; Sohng JK
    World J Microbiol Biotechnol; 2018 May; 34(6):77. PubMed ID: 29796897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.