These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 30617827)

  • 1. Prediction of Structures and Interactions from Genome Information.
    Miyazawa S
    Adv Exp Med Biol; 2018; 1105():123-152. PubMed ID: 30617827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era.
    Kamisetty H; Ovchinnikov S; Baker D
    Proc Natl Acad Sci U S A; 2013 Sep; 110(39):15674-9. PubMed ID: 24009338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KScons: a Bayesian approach for protein residue contact prediction using the knob-socket model of protein tertiary structure.
    Li Q; Dahl DB; Vannucci M; Joo H; Tsai JW
    Bioinformatics; 2016 Dec; 32(24):3774-3781. PubMed ID: 27559156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting residue-residue contacts using random forest models.
    Li Y; Fang Y; Fang J
    Bioinformatics; 2011 Dec; 27(24):3379-84. PubMed ID: 22016406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct-coupling analysis of residue coevolution captures native contacts across many protein families.
    Morcos F; Pagnani A; Lunt B; Bertolino A; Marks DS; Sander C; Zecchina R; Onuchic JN; Hwa T; Weigt M
    Proc Natl Acad Sci U S A; 2011 Dec; 108(49):E1293-301. PubMed ID: 22106262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting protein β-sheet contacts using a maximum entropy-based correlated mutation measure.
    Burkoff NS; Várnai C; Wild DL
    Bioinformatics; 2013 Mar; 29(5):580-7. PubMed ID: 23314126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting protein residue-residue contacts using random forests and deep networks.
    Luttrell J; Liu T; Zhang C; Wang Z
    BMC Bioinformatics; 2019 Mar; 20(Suppl 2):100. PubMed ID: 30871477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of residue pairing in interacting β-strands from a predicted residue contact map.
    Mao W; Wang T; Zhang W; Gong H
    BMC Bioinformatics; 2018 Apr; 19(1):146. PubMed ID: 29673311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate contact predictions using covariation techniques and machine learning.
    Kosciolek T; Jones DT
    Proteins; 2016 Sep; 84 Suppl 1(Suppl Suppl 1):145-51. PubMed ID: 26205532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein Residue Contacts and Prediction Methods.
    Adhikari B; Cheng J
    Methods Mol Biol; 2016; 1415():463-76. PubMed ID: 27115648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions.
    Larson SM; Di Nardo AA; Davidson AR
    J Mol Biol; 2000 Oct; 303(3):433-46. PubMed ID: 11031119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct coupling analysis for protein contact prediction.
    Morcos F; Hwa T; Onuchic JN; Weigt M
    Methods Mol Biol; 2014; 1137():55-70. PubMed ID: 24573474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate prediction of helix interactions and residue contacts in membrane proteins.
    Hönigschmid P; Frishman D
    J Struct Biol; 2016 Apr; 194(1):112-23. PubMed ID: 26851352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of deep learning methods for blind protein contact prediction in CASP12.
    Wang S; Sun S; Xu J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):67-77. PubMed ID: 28845538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models.
    Ekeberg M; Lövkvist C; Lan Y; Weigt M; Aurell E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012707. PubMed ID: 23410359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact-assisted protein structure modeling by global optimization in CASP11.
    Joo K; Joung I; Cheng Q; Lee SJ; Lee J
    Proteins; 2016 Sep; 84 Suppl 1():189-99. PubMed ID: 26677100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting residue-residue contact maps by a two-layer, integrated neural-network method.
    Xue B; Faraggi E; Zhou Y
    Proteins; 2009 Jul; 76(1):176-83. PubMed ID: 19137600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving accuracy of protein contact prediction using balanced network deconvolution.
    Sun HP; Huang Y; Wang XF; Zhang Y; Shen HB
    Proteins; 2015 Mar; 83(3):485-96. PubMed ID: 25524593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.