BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 30618244)

  • 21. Towards understanding solvation effects on the conformational entropy of non-rigid molecules.
    Gorges J; Grimme S; Hansen A; Pracht P
    Phys Chem Chem Phys; 2022 May; 24(20):12249-12259. PubMed ID: 35543018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developing end-point methods for absolute binding free energy calculation using the Boltzmann-quasiharmonic model.
    Wickstrom L; Gallicchio E; Chen L; Kurtzman T; Deng N
    Phys Chem Chem Phys; 2022 Mar; 24(10):6037-6052. PubMed ID: 35212338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energetic and entropic factors determining binding affinity in protein-ligand complexes.
    Klebe G; Böhm HJ
    J Recept Signal Transduct Res; 1997; 17(1-3):459-73. PubMed ID: 9029508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measuring Entropy in Molecular Recognition by Proteins.
    Wand AJ; Sharp KA
    Annu Rev Biophys; 2018 May; 47():41-61. PubMed ID: 29345988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein-Ligand Complex Solvation Thermodynamics: Development, Parameterization, and Testing of GIST-Based Solvent Functionals.
    Hüfner-Wulsdorf T; Klebe G
    J Chem Inf Model; 2020 Mar; 60(3):1409-1423. PubMed ID: 31922753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamic Decomposition of Solvation Free Energies with Particle Mesh Ewald and Long-Range Lennard-Jones Interactions in Grid Inhomogeneous Solvation Theory.
    Chen L; Cruz A; Roe DR; Simmonett AC; Wickstrom L; Deng N; Kurtzman T
    J Chem Theory Comput; 2021 May; 17(5):2714-2724. PubMed ID: 33830762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissecting the Conformational Free Energy of a Small Peptide in Solution.
    Fajardo TN; Heyden M
    J Phys Chem B; 2021 May; 125(18):4634-4644. PubMed ID: 33942611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Empirical calculation of the relative free energies of peptide binding to the molecular chaperone DnaK.
    Kasper P; Christen P; Gehring H
    Proteins; 2000 Aug; 40(2):185-92. PubMed ID: 10842335
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Paradoxically, Most Flexible Ligand Binds Most Entropy-Favored: Intriguing Impact of Ligand Flexibility and Solvation on Drug-Kinase Binding.
    Wienen-Schmidt B; Jonker HRA; Wulsdorf T; Gerber HD; Saxena K; Kudlinzki D; Sreeramulu S; Parigi G; Luchinat C; Heine A; Schwalbe H; Klebe G
    J Med Chem; 2018 Jul; 61(14):5922-5933. PubMed ID: 29909615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformational energy penalties of protein-bound ligands.
    Boström J; Norrby PO; Liljefors T
    J Comput Aided Mol Des; 1998 Jul; 12(4):383-96. PubMed ID: 9777496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimates of ligand-binding affinities supported by quantum mechanical methods.
    Söderhjelm P; Kongsted J; Genheden S; Ryde U
    Interdiscip Sci; 2010 Mar; 2(1):21-37. PubMed ID: 20640794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contributions to the binding free energy of ligands to avidin and streptavidin.
    Lazaridis T; Masunov A; Gandolfo F
    Proteins; 2002 May; 47(2):194-208. PubMed ID: 11933066
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Water makes the difference: rearrangement of water solvation layer triggers non-additivity of functional group contributions in protein-ligand binding.
    Biela A; Betz M; Heine A; Klebe G
    ChemMedChem; 2012 Aug; 7(8):1423-34. PubMed ID: 22733601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformer selection and differential restriction of ligand mobility by a plant lectin--conformational behaviour of Galbeta1-3GlcNAcbeta1-R, Galbeta1-3GalNAcbeta1-R and Galbeta1-2Galbeta1-R' in the free state and complexed with galactoside-specific mistletoe lectin as revealed by random-walk and conformational-clustering molecular-mechanics.
    Gilleron M; Siebert HC; Kaltner H; von der Lieth CW; Kozár T; Halkes KM; Korchagina EY; Bovin NV; Gabius HJ; Vliegenthart JF
    Eur J Biochem; 1998 Mar; 252(3):416-27. PubMed ID: 9546657
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding Pose Flip Explained via Enthalpic and Entropic Contributions.
    Schauperl M; Czodrowski P; Fuchs JE; Huber RG; Waldner BJ; Podewitz M; Kramer C; Liedl KR
    J Chem Inf Model; 2017 Feb; 57(2):345-354. PubMed ID: 28079371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards understanding the unbound state of drug compounds: Implications for the intramolecular reorganization energy upon binding.
    Foloppe N; Chen IJ
    Bioorg Med Chem; 2016 May; 24(10):2159-89. PubMed ID: 27061672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf.
    Gohlke H; Case DA
    J Comput Chem; 2004 Jan; 25(2):238-50. PubMed ID: 14648622
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unravelling the Time Scale of Conformational Plasticity and Allostery in Glycan Recognition by Human Galectin-1.
    Bertuzzi S; Gimeno A; Núñez-Franco R; Bernardo-Seisdedos G; Delgado S; Jiménez-Osés G; Millet O; Jiménez-Barbero J; Ardá A
    Chemistry; 2020 Dec; 26(67):15643-15653. PubMed ID: 32780906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease.
    Kar P; Lipowsky R; Knecht V
    J Phys Chem B; 2013 May; 117(19):5793-805. PubMed ID: 23614718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A detailed binding free energy study of 2:1 ligand-DNA complex formation by experiment and simulation.
    Treesuwan W; Wittayanarakul K; Anthony NG; Huchet G; Alniss H; Hannongbua S; Khalaf AI; Suckling CJ; Parkinson JA; Mackay SP
    Phys Chem Chem Phys; 2009 Dec; 11(45):10682-93. PubMed ID: 20145812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.