These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress. Dikalova AE; Pandey A; Xiao L; Arslanbaeva L; Sidorova T; Lopez MG; Billings FT; Verdin E; Auwerx J; Harrison DG; Dikalov SI Circ Res; 2020 Feb; 126(4):439-452. PubMed ID: 31852393 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of Mitochondrial Oxidative Damage Improves Reendothelialization Capacity of Endothelial Progenitor Cells via SIRT3 (Sirtuin 3)-Enhanced SOD2 (Superoxide Dismutase 2) Deacetylation in Hypertension. He J; Liu X; Su C; Wu F; Sun J; Zhang J; Yang X; Zhang C; Zhou Z; Zhang X; Lin X; Tao J Arterioscler Thromb Vasc Biol; 2019 Aug; 39(8):1682-1698. PubMed ID: 31189433 [TBL] [Abstract][Full Text] [Related]
6. Mitochondrial deacetylase Sirt3 in vascular dysfunction and hypertension. Dikalov S; Dikalova A Curr Opin Nephrol Hypertens; 2022 Mar; 31(2):151-156. PubMed ID: 35086984 [TBL] [Abstract][Full Text] [Related]
7. Deacetylation mimetic mutation of mitochondrial SOD2 attenuates ANG II-induced hypertension by protecting against oxidative stress and inflammation. Dikalova A; Ao M; Tkachuk L; Dikalov S Am J Physiol Heart Circ Physiol; 2024 Aug; 327(2):H433-H443. PubMed ID: 38904850 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial Hyperacetylation in the Failing Hearts of Obese Patients Mediated Partly by a Reduction in SIRT3: The Involvement of the Mitochondrial Permeability Transition Pore. Castillo EC; Morales JA; Chapoy-Villanueva H; Silva-Platas C; Treviño-Saldaña N; Guerrero-Beltrán CE; Bernal-Ramírez J; Torres-Quintanilla A; García N; Youker K; Torre-Amione G; García-Rivas G Cell Physiol Biochem; 2019; 53(3):465-479. PubMed ID: 31464387 [TBL] [Abstract][Full Text] [Related]
9. Dysregulated cellular redox status during hyperammonemia causes mitochondrial dysfunction and senescence by inhibiting sirtuin-mediated deacetylation. Mishra S; Welch N; Karthikeyan M; Bellar A; Musich R; Singh SS; Zhang D; Sekar J; Attaway AH; Chelluboyina AK; Lorkowski SW; Roychowdhury S; Li L; Willard B; Smith JD; Hoppel CL; Vachharajani V; Kumar A; Dasarathy S Aging Cell; 2023 Jul; 22(7):e13852. PubMed ID: 37101412 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial Isolevuglandins Contribute to Vascular Oxidative Stress and Mitochondria-Targeted Scavenger of Isolevuglandins Reduces Mitochondrial Dysfunction and Hypertension. Dikalova A; Mayorov V; Xiao L; Panov A; Amarnath V; Zagol-Ikapitte I; Vergeade A; Ao M; Yermalitsky V; Nazarewicz RR; Boutaud O; Lopez MG; Billings FT; Davies S; Roberts LJ; Harrison DG; Dikalov S Hypertension; 2020 Dec; 76(6):1980-1991. PubMed ID: 33012204 [TBL] [Abstract][Full Text] [Related]
12. Metabolic reprogramming of human cells in response to oxidative stress: implications in the pathophysiology and therapy of mitochondrial diseases. Wu YT; Wu SB; Wei YH Curr Pharm Des; 2014; 20(35):5510-26. PubMed ID: 24606797 [TBL] [Abstract][Full Text] [Related]
13. Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice. Fritz KS; Galligan JJ; Hirschey MD; Verdin E; Petersen DR J Proteome Res; 2012 Mar; 11(3):1633-43. PubMed ID: 22309199 [TBL] [Abstract][Full Text] [Related]
14. Neuronal SIRT3 Deletion Predisposes to Female-Specific Alterations in Cellular Metabolism, Memory, and Network Excitability. Pearson-Smith JN; Fulton R; Huynh CQ; Figueroa AG; Huynh GB; Liang LP; Gano LB; Michel CR; Reisdorph N; Reisdorph R; Fritz KS; Verdin E; Patel M J Neurosci; 2023 Mar; 43(10):1845-1857. PubMed ID: 36759193 [TBL] [Abstract][Full Text] [Related]
15. Regulation of mitochondrial F(o)F(1)ATPase activity by Sirt3-catalyzed deacetylation and its deficiency in human cells harboring 4977bp deletion of mitochondrial DNA. Wu YT; Lee HC; Liao CC; Wei YH Biochim Biophys Acta; 2013 Jan; 1832(1):216-27. PubMed ID: 23046812 [TBL] [Abstract][Full Text] [Related]
16. Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1. Scott I; Webster BR; Li JH; Sack MN Biochem J; 2012 May; 443(3):655-61. PubMed ID: 22309213 [TBL] [Abstract][Full Text] [Related]
17. Chronic ethanol consumption induces mitochondrial protein acetylation and oxidative stress in the kidney. Harris PS; Roy SR; Coughlan C; Orlicky DJ; Liang Y; Shearn CT; Roede JR; Fritz KS Redox Biol; 2015 Dec; 6():33-40. PubMed ID: 26177469 [TBL] [Abstract][Full Text] [Related]
18. Protein Lysine Acetylation: Grease or Sand in the Gears of β-Cell Mitochondria? Santo-Domingo J; Dayon L; Wiederkehr A J Mol Biol; 2020 Mar; 432(5):1446-1460. PubMed ID: 31628953 [TBL] [Abstract][Full Text] [Related]
19. Acetylation of Mitochondrial Proteins in the Heart: The Role of SIRT3. Parodi-Rullán RM; Chapa-Dubocq XR; Javadov S Front Physiol; 2018; 9():1094. PubMed ID: 30131726 [TBL] [Abstract][Full Text] [Related]