These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30618573)

  • 1. Assessing the Functional Role of Frontal Eye Fields in Voluntary and Reflexive Saccades Using Continuous Theta Burst Stimulation.
    Gurel SC; Castelo-Branco M; Sack AT; Duecker F
    Front Neurosci; 2018; 12():944. PubMed ID: 30618573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociable Roles of Dorsolateral Prefrontal Cortex and Frontal Eye Fields During Saccadic Eye Movements.
    Cameron IG; Riddle JM; D'Esposito M
    Front Hum Neurosci; 2015; 9():613. PubMed ID: 26635572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenously generated and visually guided saccades after lesions of the human frontal eye fields.
    Henik A; Rafal R; Rhodes D
    J Cogn Neurosci; 1994; 6(4):400-11. PubMed ID: 23961734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effects of a TMS Double Perturbation to a Cortical Network.
    Cameron IGM; Cretu AL; Struik F; Toni I
    eNeuro; 2020; 7(1):. PubMed ID: 31924733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the frontal eye fields in oculomotor competition: image-guided TMS enhances contralateral target selection.
    Bosch SE; Neggers SF; Van der Stigchel S
    Cereb Cortex; 2013 Apr; 23(4):824-32. PubMed ID: 22455840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neck muscle responses evoked by transcranial magnetic stimulation of the human frontal eye fields.
    Goonetilleke SC; Gribble PL; Mirsattari SM; Doherty TJ; Corneil BD
    Eur J Neurosci; 2011 Jun; 33(11):2155-67. PubMed ID: 21645109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distributed representations of the "preparatory set" in the frontal oculomotor system: a TMS study.
    Nagel M; Sprenger A; Lencer R; Kömpf D; Siebner H; Heide W
    BMC Neurosci; 2008 Sep; 9():89. PubMed ID: 18801205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field.
    Burman DD; Bruce CJ
    J Neurophysiol; 1997 May; 77(5):2252-67. PubMed ID: 9163356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human microsaccade cueing modulation in visual- and memory-delay saccade tasks after theta burst transcranial magnetic stimulation over the frontal eye field.
    Barquero C; Chen JT; Munoz DP; Wang CA
    Neuropsychologia; 2023 Aug; 187():108626. PubMed ID: 37336260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repetitive TMS over the human oculomotor cortex: comparison of 1-Hz and theta burst stimulation.
    Nyffeler T; Wurtz P; Lüscher HR; Hess CW; Senn W; Pflugshaupt T; von Wartburg R; Lüthi M; Müri RM
    Neurosci Lett; 2006 Nov; 409(1):57-60. PubMed ID: 17049743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstimulation of the lateral wall of the intraparietal sulcus compared with the frontal eye field during oculomotor tasks.
    Mushiake H; Fujii N; Tanji J
    J Neurophysiol; 1999 Mar; 81(3):1443-8. PubMed ID: 10085372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Idiosyncratic left-right asymmetries of saccadic latencies: examination in a gap paradigm.
    Honda H
    Vision Res; 2002 May; 42(11):1437-45. PubMed ID: 12044750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The frontal eye field is involved in visual vector inversion in humans--a theta burst stimulation study.
    Jaun-Frutiger K; Cazzoli D; Müri RM; Bassetti CL; Nyffeler T
    PLoS One; 2013; 8(12):e83297. PubMed ID: 24376682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of fixation and saccades during an anti-saccade task: an investigation in humans with chronic lesions of oculomotor cortex.
    Machado L; Rafal RD
    Exp Brain Res; 2004 May; 156(1):55-63. PubMed ID: 14685809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective TMS-induced modulation of functional connectivity correlates with changes in behavior.
    Balan PF; Gerits A; Mantini D; Vanduffel W
    Neuroimage; 2017 Apr; 149():361-378. PubMed ID: 28179165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcranial magnetic stimulation of macaque frontal eye fields decreases saccadic reaction time.
    Gerits A; Ruff CC; Guipponi O; Wenderoth N; Driver J; Vanduffel W
    Exp Brain Res; 2011 Jul; 212(1):143-52. PubMed ID: 21544509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impairment but not abolishment of express saccades after unilateral or bilateral inactivation of the frontal eye fields.
    Dash S; Peel TR; Lomber SG; Corneil BD
    J Neurophysiol; 2020 May; 123(5):1907-1919. PubMed ID: 32267202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expectations can modulate the frequency and timing of multiple saccades: a TMS study.
    Martin K; van Donkelaar P
    Exp Brain Res; 2012 Aug; 221(1):51-8. PubMed ID: 22736293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the frontal eye field in human microsaccade responses: A TMS study.
    Hsu TY; Chen JT; Tseng P; Wang CA
    Biol Psychol; 2021 Oct; 165():108202. PubMed ID: 34634433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.