These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30618696)

  • 1. Reproducible Neural Network Simulations: Statistical Methods for Model Validation on the Level of Network Activity Data.
    Gutzen R; von Papen M; Trensch G; Quaglio P; Grün S; Denker M
    Front Neuroinform; 2018; 12():90. PubMed ID: 30618696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rigorous Neural Network Simulations: A Model Substantiation Methodology for Increasing the Correctness of Simulation Results in the Absence of Experimental Validation Data.
    Trensch G; Gutzen R; Blundell I; Denker M; Morrison A
    Front Neuroinform; 2018; 12():81. PubMed ID: 30534066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a Bio-Inspired Real-Time Neuromorphic Cerebellum.
    Bogdan PA; Marcinnò B; Casellato C; Casali S; Rowley AGD; Hopkins M; Leporati F; D'Angelo E; Rhodes O
    Front Cell Neurosci; 2021; 15():622870. PubMed ID: 34135732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model.
    van Albada SJ; Rowley AG; Senk J; Hopkins M; Schmidt M; Stokes AB; Lester DR; Diesmann M; Furber SB
    Front Neurosci; 2018; 12():291. PubMed ID: 29875620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-Scale Simulations of Plastic Neural Networks on Neuromorphic Hardware.
    Knight JC; Tully PJ; Kaplan BA; Lansner A; Furber SB
    Front Neuroanat; 2016; 10():37. PubMed ID: 27092061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallelization of Neural Processing on Neuromorphic Hardware.
    Peres L; Rhodes O
    Front Neurosci; 2022; 16():867027. PubMed ID: 35620669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BindsNET: A Machine Learning-Oriented Spiking Neural Networks Library in Python.
    Hazan H; Saunders DJ; Khan H; Patel D; Sanghavi DT; Siegelmann HT; Kozma R
    Front Neuroinform; 2018; 12():89. PubMed ID: 30631269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi.
    Dey S; Dimitrov A
    Front Neurosci; 2022; 16():883360. PubMed ID: 35712458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi.
    Dey S; Dimitrov A
    Front Neuroinform; 2022; 16():883360. PubMed ID: 36726406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concurrent heterogeneous neural model simulation on real-time neuromimetic hardware.
    Rast A; Galluppi F; Davies S; Plana L; Patterson C; Sharp T; Lester D; Furber S
    Neural Netw; 2011 Nov; 24(9):961-78. PubMed ID: 21778034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine.
    Sen-Bhattacharya B; Serrano-Gotarredona T; Balassa L; Bhattacharya A; Stokes AB; Rowley A; Sugiarto I; Furber S
    Front Neurosci; 2017; 11():454. PubMed ID: 28848380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. sPyNNaker: A Software Package for Running PyNN Simulations on SpiNNaker.
    Rhodes O; Bogdan PA; Brenninkmeijer C; Davidson S; Fellows D; Gait A; Lester DR; Mikaitis M; Plana LA; Rowley AGD; Stokes AB; Furber SB
    Front Neurosci; 2018; 12():816. PubMed ID: 30524220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synapse-Centric Mapping of Cortical Models to the SpiNNaker Neuromorphic Architecture.
    Knight JC; Furber SB
    Front Neurosci; 2016; 10():420. PubMed ID: 27683540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator.
    Hahne J; Dahmen D; Schuecker J; Frommer A; Bolten M; Helias M; Diesmann M
    Front Neuroinform; 2017; 11():34. PubMed ID: 28596730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time cortical simulation on neuromorphic hardware.
    Rhodes O; Peres L; Rowley AGD; Gait A; Plana LA; Brenninkmeijer C; Furber SB
    Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2164):20190160. PubMed ID: 31865885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Modular Workflow for Performance Benchmarking of Neuronal Network Simulations.
    Albers J; Pronold J; Kurth AC; Vennemo SB; Haghighi Mood K; Patronis A; Terhorst D; Jordan J; Kunkel S; Tetzlaff T; Diesmann M; Senk J
    Front Neuroinform; 2022; 16():837549. PubMed ID: 35645755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GPUs Outperform Current HPC and Neuromorphic Solutions in Terms of Speed and Energy When Simulating a Highly-Connected Cortical Model.
    Knight JC; Nowotny T
    Front Neurosci; 2018; 12():941. PubMed ID: 30618570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nengo and Low-Power AI Hardware for Robust, Embedded Neurorobotics.
    DeWolf T; Jaworski P; Eliasmith C
    Front Neurorobot; 2020; 14():568359. PubMed ID: 33162886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.