These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 30619029)

  • 41. Handwriting training in Parkinson's disease: A trade-off between size, speed and fluency.
    Nackaerts E; Broeder S; Pereira MP; Swinnen SP; Vandenberghe W; Nieuwboer A; Heremans E
    PLoS One; 2017; 12(12):e0190223. PubMed ID: 29272301
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wrist Proprioception: Amplitude or Position Coding?
    Marini F; Squeri V; Morasso P; Masia L
    Front Neurorobot; 2016; 10():13. PubMed ID: 27807417
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coupling Robot-Aided Assessment and Surface Electromyography (sEMG) to Evaluate the Effect of Muscle Fatigue on Wrist Position Sense in the Flexion-Extension Plane.
    Mugnosso M; Zenzeri J; Hughes CML; Marini F
    Front Hum Neurosci; 2019; 13():396. PubMed ID: 31736733
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neural correlates of bilateral proprioception and adaptation with training.
    Rueda Parra S; Perry JC; Wolbrecht ET; Gupta D
    PLoS One; 2024; 19(3):e0299873. PubMed ID: 38489319
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dyad motor learning in a wrist-robotic environment: Learning together is better than learning alone.
    Winter LV; Panzer S; Konczak J
    Hum Mov Sci; 2024 Feb; 93():103172. PubMed ID: 38168644
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Single Session of Robot-Controlled Proprioceptive Training Modulates Functional Connectivity of Sensory Motor Networks and Improves Reaching Accuracy in Chronic Stroke.
    Vahdat S; Darainy M; Thiel A; Ostry DJ
    Neurorehabil Neural Repair; 2019 Jan; 33(1):70-81. PubMed ID: 30595082
    [TBL] [Abstract][Full Text] [Related]  

  • 47. LSVT-BIG therapy in Parkinson's disease: physiological evidence for proprioceptive recalibration.
    Peterka M; Odorfer T; Schwab M; Volkmann J; Zeller D
    BMC Neurol; 2020 Jul; 20(1):276. PubMed ID: 32652957
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impaired Motor Skill Acquisition Using Mirror Visual Feedback Improved by Transcranial Direct Current Stimulation (tDCS) in Patients With Parkinson's Disease.
    Horiba M; Ueki Y; Nojima I; Shimizu Y; Sahashi K; Itamoto S; Suzuki A; Yamada G; Matsukawa N; Wada I
    Front Neurosci; 2019; 13():602. PubMed ID: 31275100
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Audio Feedback Associated With Body Movement Enhances Audio and Somatosensory Spatial Representation.
    Cuppone AV; Cappagli G; Gori M
    Front Integr Neurosci; 2018; 12():37. PubMed ID: 30233334
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proprioceptive identification of joint position versus kinaesthetic movement reproduction.
    Marini F; Ferrantino M; Zenzeri J
    Hum Mov Sci; 2018 Dec; 62():1-13. PubMed ID: 30172030
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Long-term subthalamic nucleus stimulation improves sensorimotor integration and proprioception.
    Wagle Shukla A; Moro E; Gunraj C; Lozano A; Hodaie M; Lang A; Chen R
    J Neurol Neurosurg Psychiatry; 2013 Sep; 84(9):1020-8. PubMed ID: 23616568
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tactile and proprioceptive dysfunction differentiates cervical dystonia with and without tremor.
    Avanzino L; Cherif A; Crisafulli O; Carbone F; Zenzeri J; Morasso P; Abbruzzese G; Pelosin E; Konczak J
    Neurology; 2020 Feb; 94(6):e639-e650. PubMed ID: 31937622
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy.
    Squeri V; Masia L; Giannoni P; Sandini G; Morasso P
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):312-25. PubMed ID: 23508271
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proprioceptive assessment in clinical settings: Evaluation of joint position sense in upper limb post-stroke using a robotic manipulator.
    Contu S; Hussain A; Kager S; Budhota A; Deshmukh VA; Kuah CWK; Yam LHL; Xiang L; Chua KSG; Masia L; Campolo D
    PLoS One; 2017; 12(11):e0183257. PubMed ID: 29161264
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Motor Learning in Stroke: Trained Patients Are Not Equal to Untrained Patients With Less Impairment.
    Hardwick RM; Rajan VA; Bastian AJ; Krakauer JW; Celnik PA
    Neurorehabil Neural Repair; 2017 Feb; 31(2):178-189. PubMed ID: 27789762
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Robot-Aided Upper-limb Proprioceptive Training in Three-Dimensional Space.
    Valdes BA; Khoshnam M; Neva JL; Menon C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():121-126. PubMed ID: 31374617
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impaired Retention of Motor Learning of Writing Skills in Patients with Parkinson's Disease with Freezing of Gait.
    Heremans E; Nackaerts E; Vervoort G; Broeder S; Swinnen SP; Nieuwboer A
    PLoS One; 2016; 11(2):e0148933. PubMed ID: 26862915
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of age and amplitude on wrist proprioceptive acuity.
    Marini F; Hughes CML; Morasso P; Masia L
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():609-614. PubMed ID: 28813887
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A composite robotic-based measure of upper limb proprioception.
    Kenzie JM; Semrau JA; Hill MD; Scott SH; Dukelow SP
    J Neuroeng Rehabil; 2017 Nov; 14(1):114. PubMed ID: 29132388
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impact of Parkinson's disease on proprioceptively based on-line movement control.
    Mongeon D; Blanchet P; Bergeron S; Messier J
    Exp Brain Res; 2015 Sep; 233(9):2707-21. PubMed ID: 26055990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.