BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 30619180)

  • 1.
    Panzetta ME; Valdivia RH; Saka HA
    Front Microbiol; 2018; 9():3101. PubMed ID: 30619180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ptr/CTL0175 Is Required for the Efficient Recovery of
    Panzetta ME; Luján AL; Bastidas RJ; Damiani MT; Valdivia RH; Saka HA
    Front Microbiol; 2019; 10():756. PubMed ID: 31024512
    [No Abstract]   [Full Text] [Related]  

  • 3. Multiple Chlamydiaceae species in trachoma: implications for disease pathogenesis and control.
    Dean D; Kandel RP; Adhikari HK; Hessel T
    PLoS Med; 2008 Jan; 5(1):e14. PubMed ID: 18177205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and comparison of differentially expressed genes involved in Chlamydia psittaci persistent infection in vitro and in vivo.
    Chen Y; Wang C; Mi J; Zhou Z; Wang J; Tang M; Yu J; Liu A; Wu Y
    Vet Microbiol; 2021 Apr; 255():108960. PubMed ID: 33667981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical Persistence of Chlamydia trachomatis Sexually Transmitted Strains Involves Novel Mutations in the Functional αββα Tetramer of the Tryptophan Synthase Operon.
    Somboonna N; Ziklo N; Ferrin TE; Hyuk Suh J; Dean D
    mBio; 2019 Jul; 10(4):. PubMed ID: 31311884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of Chlamydia trachomatis during Treatment with β-Lactam Antimicrobials.
    Shima K; Kaufhold I; Eder T; Käding N; Schmidt N; Ogunsulire IM; Deenen R; Köhrer K; Friedrich D; Isay SE; Grebien F; Klinger M; Richer BC; Günther UL; Deepe GS; Rattei T; Rupp J
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Commonly prescribed β-lactam antibiotics induce C. trachomatis persistence/stress in culture at physiologically relevant concentrations.
    Kintner J; Lajoie D; Hall J; Whittimore J; Schoborg RV
    Front Cell Infect Microbiol; 2014; 4():44. PubMed ID: 24783061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of tRNA Synthetases Induces Persistence in
    Hatch ND; Ouellette SP
    Infect Immun; 2020 Mar; 88(4):. PubMed ID: 31964747
    [No Abstract]   [Full Text] [Related]  

  • 9. Influence of the tryptophan-indole-IFNγ axis on human genital Chlamydia trachomatis infection: role of vaginal co-infections.
    Aiyar A; Quayle AJ; Buckner LR; Sherchand SP; Chang TL; Zea AH; Martin DH; Belland RJ
    Front Cell Infect Microbiol; 2014; 4():72. PubMed ID: 24918090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlamydia trachomatis responds to heat shock, penicillin induced persistence, and IFN-gamma persistence by altering levels of the extracytoplasmic stress response protease HtrA.
    Huston WM; Theodoropoulos C; Mathews SA; Timms P
    BMC Microbiol; 2008 Nov; 8():190. PubMed ID: 18986550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydia species as a cause of community-acquired pneumonia in Canada.
    Marrie TJ; Peeling RW; Reid T; De Carolis E;
    Eur Respir J; 2003 May; 21(5):779-84. PubMed ID: 12765420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic Screen in Chlamydia muridarum Reveals Role for an Interferon-Induced Host Cell Death Program in Antimicrobial Inclusion Rupture.
    Giebel AM; Hu S; Rajaram K; Finethy R; Toh E; Brothwell JA; Morrison SG; Suchland RJ; Stein BD; Coers J; Morrison RP; Nelson DE
    mBio; 2019 Apr; 10(2):. PubMed ID: 30967464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional response patterns of Chlamydophila psittaci in different in vitro models of persistent infection.
    Goellner S; Schubert E; Liebler-Tenorio E; Hotzel H; Saluz HP; Sachse K
    Infect Immun; 2006 Aug; 74(8):4801-8. PubMed ID: 16861668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Chlamydia psittaci genome: a comparative analysis of intracellular pathogens.
    Voigt A; Schöfl G; Saluz HP
    PLoS One; 2012; 7(4):e35097. PubMed ID: 22506068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Plasmid Shuttle Vector System for Genetic Manipulation of Chlamydia psittaci.
    Shima K; Weber MM; Schnee C; Sachse K; Käding N; Klinger M; Rupp J
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32848009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of IgM antibodies to Chlamydia trachomatis, Chlamydia pneumoniae, and Chlamydia psittaci from Japanese infants and children with pneumonia.
    Numazaki K; Chiba S; Umetsu M
    In Vivo; 1992; 6(6):601-4. PubMed ID: 1296808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. When Bacteria and Viruses Collide: A Tale of
    Ghasemian E; Harding-Esch E; Mabey D; Holland MJ
    Viruses; 2023 Sep; 15(9):. PubMed ID: 37766360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlamydia trachomatis persistence in vitro: an overview.
    Wyrick PB
    J Infect Dis; 2010 Jun; 201 Suppl 2(Suppl 2):S88-95. PubMed ID: 20470046
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Cheong HC; Lee CYQ; Cheok YY; Tan GMY; Looi CY; Wong WF
    Microorganisms; 2019 May; 7(5):. PubMed ID: 31137741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlamydia-host cell interaction not only from a bird's eye view: some lessons from Chlamydia psittaci.
    Radomski N; Einenkel R; Müller A; Knittler MR
    FEBS Lett; 2016 Nov; 590(21):3920-3940. PubMed ID: 27397851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.