BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 30619255)

  • 41. Changes in sialyltransferase activity during murine T cell differentiation.
    Toporowicz A; Reisner Y
    Cell Immunol; 1986 Jun; 100(1):10-9. PubMed ID: 3488816
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel core 1 O-linked glycan-specific binding lectin from the fruiting body of Hericium erinaceus.
    Kim S
    Int J Biol Macromol; 2018 Feb; 107(Pt B):1528-1537. PubMed ID: 28988842
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Caveolin-1 knockout mice have altered serum N-glycan profile and sialyltransferase tissue expression.
    Chen X; Wang L; Wu Y; Zhang H; Dong W; Yu X; Huang C; Li Y; Wang S; Zhang J
    J Physiol Biochem; 2022 Feb; 78(1):73-83. PubMed ID: 34462883
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Galectin-Glycan Interactions as Regulators of B Cell Immunity.
    Giovannone N; Smith LK; Treanor B; Dimitroff CJ
    Front Immunol; 2018; 9():2839. PubMed ID: 30564237
    [TBL] [Abstract][Full Text] [Related]  

  • 45. N-glycosylation Profiling of Colorectal Cancer Cell Lines Reveals Association of Fucosylation with Differentiation and Caudal Type Homebox 1 (CDX1)/Villin mRNA Expression.
    Holst S; Deuss AJ; van Pelt GW; van Vliet SJ; Garcia-Vallejo JJ; Koeleman CA; Deelder AM; Mesker WE; Tollenaar RA; Rombouts Y; Wuhrer M
    Mol Cell Proteomics; 2016 Jan; 15(1):124-40. PubMed ID: 26537799
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recognition of galactose-deficient O-glycans in the hinge region of IgA1 by N-acetylgalactosamine-specific snail lectins: a comparative binding study.
    Gomes MM; Suzuki H; Brooks MT; Tomana M; Moldoveanu Z; Mestecky J; Julian BA; Novak J; Herr AB
    Biochemistry; 2010 Jul; 49(27):5671-82. PubMed ID: 20507092
    [TBL] [Abstract][Full Text] [Related]  

  • 47. ST3GAL1-Associated Transcriptomic Program in Glioblastoma Tumor Growth, Invasion, and Prognosis.
    Chong YK; Sandanaraj E; Koh LW; Thangaveloo M; Tan MS; Koh GR; Toh TB; Lim GG; Holbrook JD; Kon OL; Nadarajah M; Ng I; Ng WH; Tan NS; Lim KL; Tang C; Ang BT
    J Natl Cancer Inst; 2016 Feb; 108(2):. PubMed ID: 26547933
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Glycosylation Changes Triggered by the Differentiation of Monocytic THP-1 Cell Line into Macrophages.
    Delannoy CP; Rombouts Y; Groux-Degroote S; Holst S; Coddeville B; Harduin-Lepers A; Wuhrer M; Elass-Rochard E; Guérardel Y
    J Proteome Res; 2017 Jan; 16(1):156-169. PubMed ID: 27351377
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Glycomic analysis of gastric carcinoma cells discloses glycans as modulators of RON receptor tyrosine kinase activation in cancer.
    Mereiter S; Magalhães A; Adamczyk B; Jin C; Almeida A; Drici L; Ibáñez-Vea M; Gomes C; Ferreira JA; Afonso LP; Santos LL; Larsen MR; Kolarich D; Karlsson NG; Reis CA
    Biochim Biophys Acta; 2016 Aug; 1860(8):1795-808. PubMed ID: 26721331
    [TBL] [Abstract][Full Text] [Related]  

  • 50. O-linked glycosylation of the mucin domain of the herpes simplex virus type 1-specific glycoprotein gC-1 is temporally regulated in a seed-and-spread manner.
    Nordén R; Halim A; Nyström K; Bennett EP; Mandel U; Olofsson S; Nilsson J; Larson G
    J Biol Chem; 2015 Feb; 290(8):5078-5091. PubMed ID: 25548287
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enzymatic sialylation of IgA1 O-glycans: implications for studies of IgA nephropathy.
    Takahashi K; Raska M; Stuchlova Horynova M; Hall SD; Poulsen K; Kilian M; Hiki Y; Yuzawa Y; Moldoveanu Z; Julian BA; Renfrow MB; Novak J
    PLoS One; 2014; 9(2):e99026. PubMed ID: 24918438
    [TBL] [Abstract][Full Text] [Related]  

  • 52. BMP-7 induces apoptosis in human germinal center B cells and is influenced by TGF-β receptor type I ALK5.
    Bollum LK; Huse K; Oksvold MP; Bai B; Hilden VI; Forfang L; Yoon SO; Wälchli S; Smeland EB; Myklebust JH
    PLoS One; 2017; 12(5):e0177188. PubMed ID: 28489883
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vivo obtained antigen presented by germinal center B cells to T cells in vitro.
    Kosco MH; Szakal AK; Tew JG
    J Immunol; 1988 Jan; 140(2):354-60. PubMed ID: 3257234
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pre-B cells in mouse bone marrow: in vitro maturation of peanut agglutinin binding B lymphocyte precursors separated from bone marrow by fluorescence-activated cell sorting.
    Osmond DG; Melchers F; Paige CJ
    J Immunol; 1984 Jul; 133(1):86-90. PubMed ID: 6427348
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bacterial lectin BambL acts as a B cell superantigen.
    Frensch M; Jäger C; Müller PF; Tadić A; Wilhelm I; Wehrum S; Diedrich B; Fischer B; Meléndez AV; Dengjel J; Eibel H; Römer W
    Cell Mol Life Sci; 2021 Dec; 78(24):8165-8186. PubMed ID: 34731252
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Anti-T antibodies and peanut-agglutinin-binding glycoproteins in sera of patients with gastric cancer.
    Hwang IR; Nahm DH; Cho SN; Longenecker BM; Rao Koganty R; Park IS
    J Cancer Res Clin Oncol; 1999 Oct; 125(10):582-7. PubMed ID: 10473872
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mucin-type O-glycans in tears of normal subjects and patients with non-Sjögren's dry eye.
    Guzman-Aranguez A; Mantelli F; Argüeso P
    Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4581-7. PubMed ID: 19407012
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sialyltransferase activity in FR3T3 cells transformed with ras oncogene: decreased CMP-Neu5Ac:Gal beta 1-3GalNAc alpha-2,3-sialyltransferase.
    Delannoy P; Pelczar H; Vandamme V; Verbert A
    Glycoconj J; 1993 Feb; 10(1):91-8. PubMed ID: 8358231
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cyclooxygenase-2 enzyme induces the expression of the α-2,3-sialyltransferase-3 (ST3Gal-I) in breast cancer.
    Sproviero D; Julien S; Burford B; Taylor-Papadimitriou J; Burchell JM
    J Biol Chem; 2012 Dec; 287(53):44490-7. PubMed ID: 23275522
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Glycomic profiling of developmental changes in bovine testis by lectin histochemistry and further analysis of the most prominent alteration on the level of the glycoproteome by lectin blotting and lectin affinity chromatography.
    Manning JC; Seyrek K; Kaltner H; André S; Sinowatz F; Gabius HJ
    Histol Histopathol; 2004 Oct; 19(4):1043-60. PubMed ID: 15375747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.