These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30619406)

  • 1. Duplication and Diversification of
    Zumajo-Cardona C; Pabón-Mora N; Ambrose BA
    Front Plant Sci; 2018; 9():1833. PubMed ID: 30619406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of the
    Zumajo-Cardona C; Ambrose BA; Pabón-Mora N
    Evodevo; 2017; 8():5. PubMed ID: 28331573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of fruit development genes in flowering plants.
    Pabón-Mora N; Wong GK; Ambrose BA
    Front Plant Sci; 2014; 5():300. PubMed ID: 25018763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of genes associated with gynoecium patterning and fruit development in Solanaceae.
    Ortiz-Ramírez CI; Plata-Arboleda S; Pabón-Mora N
    Ann Bot; 2018 May; 121(6):1211-1230. PubMed ID: 29471367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The WOX13 homeobox gene promotes replum formation in the Arabidopsis thaliana fruit.
    Romera-Branchat M; Ripoll JJ; Yanofsky MF; Pelaz S
    Plant J; 2013 Jan; 73(1):37-49. PubMed ID: 22946675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit.
    Roeder AH; Ferrándiz C; Yanofsky MF
    Curr Biol; 2003 Sep; 13(18):1630-5. PubMed ID: 13678595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological and Molecular Characterization of Orchid Fruit Development.
    Dirks-Mulder A; Ahmed I; Uit Het Broek M; Krol L; Menger N; Snier J; van Winzum A; de Wolf A; Van't Wout M; Zeegers JJ; Butôt R; Heijungs R; van Heuven BJ; Kruizinga J; Langelaan R; Smets EF; Star W; Bemer M; Gravendeel B
    Front Plant Sci; 2019; 10():137. PubMed ID: 30838009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Common regulatory networks in leaf and fruit patterning revealed by mutations in the Arabidopsis ASYMMETRIC LEAVES1 gene.
    Alonso-Cantabrana H; Ripoll JJ; Ochando I; Vera A; Ferrándiz C; Martínez-Laborda A
    Development; 2007 Jul; 134(14):2663-71. PubMed ID: 17592013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that an evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae) was caused by a change in the control of valve margin identity genes.
    Mühlhausen A; Lenser T; Mummenhoff K; Theißen G
    Plant J; 2013 Mar; 73(5):824-35. PubMed ID: 23173897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel role for the floral homeotic gene APETALA2 during Arabidopsis fruit development.
    Ripoll JJ; Roeder AH; Ditta GS; Yanofsky MF
    Development; 2011 Dec; 138(23):5167-76. PubMed ID: 22031547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The same regulatory point mutation changed seed-dispersal structures in evolution and domestication.
    Arnaud N; Lawrenson T; Østergaard L; Sablowski R
    Curr Biol; 2011 Jul; 21(14):1215-9. PubMed ID: 21737279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flower and fruit development in Arabidopsis thaliana.
    Robles P; Pelaz S
    Int J Dev Biol; 2005; 49(5-6):633-43. PubMed ID: 16096970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The developmental and genetic bases of apetaly in Bocconia frutescens (Chelidonieae: Papaveraceae).
    Arango-Ocampo C; González F; Alzate JF; Pabón-Mora N
    Evodevo; 2016; 7():16. PubMed ID: 27489612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development.
    Müller BM; Saedler H; Zachgo S
    Plant J; 2001 Oct; 28(2):169-79. PubMed ID: 11722760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The REPLUMLESS Transcription Factor Controls the Expression of the
    Kenesi E; Beöthy-Fehér O; Szőllősi R; Domonkos I; Valkai I; Fehér A
    Int J Mol Sci; 2024 Jul; 25(14):. PubMed ID: 39063242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antagonistic gene activities determine the formation of pattern elements along the mediolateral axis of the Arabidopsis fruit.
    González-Reig S; Ripoll JJ; Vera A; Yanofsky MF; Martínez-Laborda A
    PLoS Genet; 2012; 8(11):e1003020. PubMed ID: 23133401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution and development of fruits of Erycina pusilla and other orchid species.
    Pramanik D; Becker A; Roessner C; Rupp O; Bogarín D; Pérez-Escobar OA; Dirks-Mulder A; Droppert K; Kocyan A; Smets E; Gravendeel B
    PLoS One; 2023; 18(10):e0286846. PubMed ID: 37815982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of the APETALA2 Gene Lineage in Seed Plants.
    Zumajo-Cardona C; Pabón-Mora N
    Mol Biol Evol; 2016 Jul; 33(7):1818-32. PubMed ID: 27030733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators.
    Kim S; Koh J; Yoo MJ; Kong H; Hu Y; Ma H; Soltis PS; Soltis DE
    Plant J; 2005 Sep; 43(5):724-44. PubMed ID: 16115069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial redundancy and functional specialization of E-class SEPALLATA genes in an early-diverging eudicot.
    Soza VL; Snelson CD; Hewett Hazelton KD; Di Stilio VS
    Dev Biol; 2016 Nov; 419(1):143-155. PubMed ID: 27502434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.