These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 30619435)

  • 1. Source-Sink Relationships in Crop Plants and Their Influence on Yield Development and Nutritional Quality.
    Smith MR; Rao IM; Merchant A
    Front Plant Sci; 2018; 9():1889. PubMed ID: 30619435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From source to sink: mechanistic insight of photoassimilates synthesis and partitioning under high temperature and elevated [CO
    Lal MK; Sharma N; Adavi SB; Sharma E; Altaf MA; Tiwari RK; Kumar R; Kumar A; Dey A; Paul V; Singh B; Singh MP
    Plant Mol Biol; 2022 Nov; 110(4-5):305-324. PubMed ID: 35610527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability.
    Albacete AA; Martínez-Andújar C; Pérez-Alfocea F
    Biotechnol Adv; 2014; 32(1):12-30. PubMed ID: 24513173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiourea, a ROS scavenger, regulates source-to-sink relationship to enhance crop yield and oil content in Brassica juncea (L.).
    Pandey M; Srivastava AK; D'Souza SF; Penna S
    PLoS One; 2013; 8(9):e73921. PubMed ID: 24058504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Source-sink interaction: a century old concept under the light of modern molecular systems biology.
    Chang TG; Zhu XG; Raines C
    J Exp Bot; 2017 Jul; 68(16):4417-4431. PubMed ID: 28338782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving crop yield and resilience through optimization of photosynthesis: panacea or pipe dream?
    Araus JL; Sanchez-Bragado R; Vicente R
    J Exp Bot; 2021 May; 72(11):3936-3955. PubMed ID: 33640973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon source-sink limitations differ between two species with contrasting growth strategies.
    Burnett AC; Rogers A; Rees M; Osborne CP
    Plant Cell Environ; 2016 Nov; 39(11):2460-2472. PubMed ID: 27422294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delaying or promoting? Manipulation of leaf senescence to improve crop yield and quality.
    Zhou M; Yang J
    Planta; 2023 Jul; 258(3):48. PubMed ID: 37477756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved cotton yield: Can we achieve this goal by regulating the coordination of source and sink?
    Qin A; Aluko OO; Liu Z; Yang J; Hu M; Guan L; Sun X
    Front Plant Sci; 2023; 14():1136636. PubMed ID: 37063185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination of carbon assimilation, allocation, and utilization for systemic improvement of cereal yield.
    Liang XG; Gao Z; Fu XX; Chen XM; Shen S; Zhou SL
    Front Plant Sci; 2023; 14():1206829. PubMed ID: 37731984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous boosting of source and sink capacities doubles tuber starch yield of potato plants.
    Jonik C; Sonnewald U; Hajirezaei MR; Flügge UI; Ludewig F
    Plant Biotechnol J; 2012 Dec; 10(9):1088-98. PubMed ID: 22931170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological implications of SWEETs in plants and their potential applications in improving source-sink relationships for enhanced yield.
    Singh J; Das S; Jagadis Gupta K; Ranjan A; Foyer CH; Thakur JK
    Plant Biotechnol J; 2023 Aug; 21(8):1528-1541. PubMed ID: 36529911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved resource allocation and stabilization of yield under abiotic stress.
    Keller I; Rodrigues CM; Neuhaus HE; Pommerrenig B
    J Plant Physiol; 2021 Feb; 257():153336. PubMed ID: 33360492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding source-sink interactions: Progress in model plants and translational research to crops.
    Rosado-Souza L; Yokoyama R; Sonnewald U; Fernie AR
    Mol Plant; 2023 Jan; 16(1):96-121. PubMed ID: 36447435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Source-Sink Communication: Regulated by Hormone, Nutrient, and Stress Cross-Signaling.
    Yu SM; Lo SF; Ho TD
    Trends Plant Sci; 2015 Dec; 20(12):844-857. PubMed ID: 26603980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing crop yield and resilience with trehalose 6-phosphate: targeting a feast-famine mechanism in cereals for better source-sink optimization.
    Paul MJ; Oszvald M; Jesus C; Rajulu C; Griffiths CA
    J Exp Bot; 2017 Jul; 68(16):4455-4462. PubMed ID: 28981769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterosis, stress, and the environment: a possible road map towards the general improvement of crop yield.
    Blum A
    J Exp Bot; 2013 Nov; 64(16):4829-37. PubMed ID: 24014873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Source-Sink Regulation in Crops under Water Deficit.
    Rodrigues J; Inzé D; Nelissen H; Saibo NJM
    Trends Plant Sci; 2019 Jul; 24(7):652-663. PubMed ID: 31109763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Next-generation strategies for understanding and influencing source-sink relations in crop plants.
    Sonnewald U; Fernie AR
    Curr Opin Plant Biol; 2018 Jun; 43():63-70. PubMed ID: 29428477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 'wiring diagram' for source strength traits impacting wheat yield potential.
    Murchie EH; Reynolds M; Slafer GA; Foulkes MJ; Acevedo-Siaca L; McAusland L; Sharwood R; Griffiths S; Flavell RB; Gwyn J; Sawkins M; Carmo-Silva E
    J Exp Bot; 2023 Jan; 74(1):72-90. PubMed ID: 36264277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.