BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30619548)

  • 1. Can drones count gulls? Minimal disturbance and semiautomated image processing with an unmanned aerial vehicle for colony-nesting seabirds.
    Rush GP; Clarke LE; Stone M; Wood MJ
    Ecol Evol; 2018 Dec; 8(24):12322-12334. PubMed ID: 30619548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seabird species vary in behavioural response to drone census.
    Brisson-Curadeau É; Bird D; Burke C; Fifield DA; Pace P; Sherley RB; Elliott KH
    Sci Rep; 2017 Dec; 7(1):17884. PubMed ID: 29263372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring Colonies of Large Gulls Using UAVs: From Individuals to Breeding Pairs.
    Corregidor-Castro A; Riddervold M; Holm TE; Bregnballe T
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of colonial Peruvian guano birds to flying UAVs: effects and feasibility for implementing new population monitoring methods.
    Irigoin-Lovera C; Luna DM; Acosta DA; Zavalaga CB
    PeerJ; 2019; 7():e8129. PubMed ID: 31844569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cost benefit analysis of survey methods for assessing intertidal sediment disturbance: A bait collection case study.
    White SM; Schaefer M; Barfield P; Cantrell R; Watson GJ
    J Environ Manage; 2022 Mar; 306():114386. PubMed ID: 35030426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drone Surveys Do Not Increase Colony-wide Flight Behaviour at Waterbird Nesting Sites, But Sensitivity Varies Among Species.
    Barr JR; Green MC; DeMaso SJ; Hardy TB
    Sci Rep; 2020 Mar; 10(1):3781. PubMed ID: 32123223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precision wildlife monitoring using unmanned aerial vehicles.
    Hodgson JC; Baylis SM; Mott R; Herrod A; Clarke RH
    Sci Rep; 2016 Mar; 6():22574. PubMed ID: 26986721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis on security-related concerns of unmanned aerial vehicle: attacks, limitations, and recommendations.
    Siddiqi MA; Iwendi C; Jaroslava K; Anumbe N
    Math Biosci Eng; 2022 Jan; 19(3):2641-2670. PubMed ID: 35240800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locating chimpanzee nests and identifying fruiting trees with an unmanned aerial vehicle.
    van Andel AC; Wich SA; Boesch C; Koh LP; Robbins MM; Kelly J; Kuehl HS
    Am J Primatol; 2015 Oct; 77(10):1122-34. PubMed ID: 26179423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition.
    McEvoy JF; Hall GP; McDonald PG
    PeerJ; 2016; 4():e1831. PubMed ID: 27020132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unmanned aerial vehicles for surveying marine fauna: assessing detection probability.
    Hodgson A; Peel D; Kelly N
    Ecol Appl; 2017 Jun; 27(4):1253-1267. PubMed ID: 28178755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-automated detection of ungulates using UAV imagery and reflective spectrometry.
    De Kock ME; Pohůnek V; Hejcmanová P
    J Environ Manage; 2022 Oct; 320():115807. PubMed ID: 35944320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated Identification of River Hydromorphological Features Using UAV High Resolution Aerial Imagery.
    Casado MR; Gonzalez RB; Kriechbaumer T; Veal A
    Sensors (Basel); 2015 Nov; 15(11):27969-89. PubMed ID: 26556355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology.
    Cruzan MB; Weinstein BG; Grasty MR; Kohrn BF; Hendrickson EC; Arredondo TM; Thompson PG
    Appl Plant Sci; 2016 Sep; 4(9):. PubMed ID: 27672518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using computer vision, image analysis and UAVs for the automatic recognition and counting of common cranes (Grus grus).
    Chen A; Jacob M; Shoshani G; Charter M
    J Environ Manage; 2023 Feb; 328():116948. PubMed ID: 36516707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A colonial-nesting seabird shows no heart-rate response to drone-based population surveys.
    Geldart EA; Barnas AF; Semeniuk CAD; Gilchrist HG; Harris CM; Love OP
    Sci Rep; 2022 Nov; 12(1):18804. PubMed ID: 36335150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. U-Space and UTM Deployment as an Opportunity for More Complex UAV Operations Including UAV Medical Transport.
    Kotlinski M; Calkowska JK
    J Intell Robot Syst; 2022; 106(1):12. PubMed ID: 36039343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate Non-Disturbance Population Survey Method of Nesting Colonies in the Reedbed with Georeferenced Aerial Imagery.
    Bakó G; Molnár Z; Szilágyi Z; Biró C; Morvai E; Ábrám Ö; Molnár A
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32370283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eyes in the Sky: Assessing the Feasibility of Low-Cost, Ready-to-Use Unmanned Aerial Vehicles to Monitor Primate Populations Directly.
    Semel BP; Karpanty SM; Vololonirina FF; Rakotonanahary AN
    Folia Primatol (Basel); 2020; 91(1):69-82. PubMed ID: 31085921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping of Agricultural Subsurface Drainage Systems Using Unmanned Aerial Vehicle Imagery and Ground Penetrating Radar.
    Koganti T; Ghane E; Martinez LR; Iversen BV; Allred BJ
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.