These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 30619817)
21. Orotidylate decarboxylase: insights into the catalytic mechanism from substrate specificity studies. Shostak K; Jones ME Biochemistry; 1992 Dec; 31(48):12155-61. PubMed ID: 1457411 [TBL] [Abstract][Full Text] [Related]
22. Evaluation of the Substrate Scope of Benzoic Acid (De)carboxylases According to Chemical and Biochemical Parameters. Pesci L; Kara S; Liese A Chembiochem; 2016 Oct; 17(19):1845-1850. PubMed ID: 27505856 [TBL] [Abstract][Full Text] [Related]
23. Radioactivity-based and spectrophotometric assays for isoorotate decarboxylase: identification of the thymidine salvage pathway in lower eukaryotes. Smiley JA; Angelot JM; Cannon RC; Marshall EM; Asch DK Anal Biochem; 1999 Jan; 266(1):85-92. PubMed ID: 9887216 [TBL] [Abstract][Full Text] [Related]
24. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases. Torrens-Spence MP; Lazear M; von Guggenberg R; Ding H; Li J Phytochemistry; 2014 Oct; 106():37-43. PubMed ID: 25107664 [TBL] [Abstract][Full Text] [Related]
25. Structural basis for the catalytic mechanism of a proficient enzyme: orotidine 5'-monophosphate decarboxylase. Harris P; Navarro Poulsen JC; Jensen KF; Larsen S Biochemistry; 2000 Apr; 39(15):4217-24. PubMed ID: 10757968 [TBL] [Abstract][Full Text] [Related]
26. Facile C-F Bond Formation through a Concerted Nucleophilic Aromatic Substitution Mediated by the PhenoFluor Reagent. Neumann CN; Ritter T Acc Chem Res; 2017 Nov; 50(11):2822-2833. PubMed ID: 29120599 [TBL] [Abstract][Full Text] [Related]
27. Functional Characterization of a Novel Member of the Amidohydrolase 2 Protein Family, 2-Hydroxy-1-Naphthoic Acid Nonoxidative Decarboxylase from Burkholderia sp. Strain BC1. Pal Chowdhury P; Basu S; Dutta A; Dutta TK J Bacteriol; 2016 Jun; 198(12):1755-1763. PubMed ID: 27068590 [TBL] [Abstract][Full Text] [Related]
28. Substrate Binding Mode and Molecular Basis of a Specificity Switch in Oxalate Decarboxylase. Zhu W; Easthon LM; Reinhardt LA; Tu C; Cohen SE; Silverman DN; Allen KN; Richards NG Biochemistry; 2016 Apr; 55(14):2163-73. PubMed ID: 27014926 [TBL] [Abstract][Full Text] [Related]
29. The Quantum Chemical Cluster Approach in Biocatalysis. Sheng X; Himo F Acc Chem Res; 2023 Apr; 56(8):938-947. PubMed ID: 36976880 [TBL] [Abstract][Full Text] [Related]
30. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates. Schütz A; Golbik R; König S; Hübner G; Tittmann K Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904 [TBL] [Abstract][Full Text] [Related]
31. Theoretical studies of the effect of thio substitution on orotidine monophosphate decarboxylase substrates. Phillips LM; Lee JK J Org Chem; 2005 Feb; 70(4):1211-21. PubMed ID: 15704953 [TBL] [Abstract][Full Text] [Related]
32. Direct spectrophotometric assays for orotate phosphoribosyltransferase and orotidylate decarboxylase. Shostak K; Christopherson RI; Jones ME Anal Biochem; 1990 Dec; 191(2):365-9. PubMed ID: 2085181 [TBL] [Abstract][Full Text] [Related]
33. Reaction of dopa decarboxylase with L-aromatic amino acids under aerobic and anaerobic conditions. Bertoldi M; Borri Voltattorni C Biochem J; 2000 Dec; 352 Pt 2(Pt 2):533-8. PubMed ID: 11085948 [TBL] [Abstract][Full Text] [Related]
34. Mechanistic Insights into the Ni-Catalyzed Reductive Carboxylation of C-O Bonds in Aromatic Esters with CO Han YL; Zhao BY; Jiang KY; Yan HM; Zhang ZX; Yang WJ; Guo Z; Li YR Chem Asian J; 2018 Jun; 13(12):1570-1581. PubMed ID: 29774983 [TBL] [Abstract][Full Text] [Related]
35. Modest catalysis of the decarboxylation of orotate by hydrogen bonding: a theoretical model for orotidine- 5' -monophosphate decarboxylase. Shem DL; Gronert S; Wu W Bioorg Chem; 2004 Apr; 32(2):76-81. PubMed ID: 14990306 [TBL] [Abstract][Full Text] [Related]
36. Quantifying weak hydrogen bonding in uracil and 4-cyano-4'-ethynylbiphenyl: a combined computational and experimental investigation of NMR chemical shifts in the solid state. Uldry AC; Griffin JM; Yates JR; Pérez-Torralba M; María MD; Webber AL; Beaumont ML; Samoson A; Claramunt RM; Pickard CJ; Brown SP J Am Chem Soc; 2008 Jan; 130(3):945-54. PubMed ID: 18166050 [TBL] [Abstract][Full Text] [Related]
38. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations. Valiev M; Kawai R; Adams JA; Weare JH J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447 [TBL] [Abstract][Full Text] [Related]
39. QM/MM Study of the Reaction Catalyzed by Alkyladenine DNA Glycosylase: Examination of the Substrate Specificity of a DNA Repair Enzyme. Lenz SAP; Wetmore SD J Phys Chem B; 2017 Dec; 121(49):11096-11108. PubMed ID: 29148771 [TBL] [Abstract][Full Text] [Related]
40. Crystal Structures of Apo and Liganded 4-Oxalocrotonate Decarboxylase Uncover a Structural Basis for the Metal-Assisted Decarboxylation of a Vinylogous β-Keto Acid. Guimarães SL; Coitinho JB; Costa DM; Araújo SS; Whitman CP; Nagem RA Biochemistry; 2016 May; 55(18):2632-45. PubMed ID: 27082660 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]