These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30619831)

  • 21. Lithiation of silicon nanoparticles confined in carbon nanotubes.
    Yu WJ; Liu C; Hou PX; Zhang L; Shan XY; Li F; Cheng HM
    ACS Nano; 2015 May; 9(5):5063-71. PubMed ID: 25869474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Facile, One-Step Synthesis of Silicon/Silicon Carbide/Carbon Nanotube Nanocomposite as a Cycling-Stable Anode for Lithium Ion Batteries.
    Zhang Y; Hu K; Zhou Y; Xia Y; Yu N; Wu G; Zhu Y; Wu Y; Huang H
    Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31731756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Freestanding symmetrical SiN/Si/SiN composite coated on carbon nanotube paper for a high-performance lithium-ion battery anode based on synergistic effects.
    He X; Yue F; Shang Z; Wang J; Gu W; Huang X
    RSC Adv; 2021 Aug; 11(45):28107-28115. PubMed ID: 35480735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexible Sub-Micro Carbon Fiber@CNTs as Anodes for Potassium-Ion Batteries.
    Shen C; Yuan K; Tian T; Bai M; Wang JG; Li X; Xie K; Fu QG; Wei B
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5015-5021. PubMed ID: 30620175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nano/Microstructured Silicon-Carbon Hybrid Composite Particles Fabricated with Corn Starch Biowaste as Anode Materials for Li-Ion Batteries.
    Kwon HJ; Hwang JY; Shin HJ; Jeong MG; Chung KY; Sun YK; Jung HG
    Nano Lett; 2020 Jan; 20(1):625-635. PubMed ID: 31825628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A facile in situ synthesis of SiC&Si@CNT composite 3D frameworks as an anode material for lithium-ion batteries.
    Su W; Liang Y; Zuo Y; Tang Y
    Dalton Trans; 2019 Sep; 48(34):12964-12973. PubMed ID: 31397472
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Building a Cycle-Stable Fe-Si Alloy/Carbon Nanocomposite Anode for Li-Ion Batteries through a Covalent-Bonding Method.
    Wang H; Fan S; Cao Y; Yang H; Ai X; Zhong F
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30503-30509. PubMed ID: 32543169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved electrochemical capacity of precursor-derived Si(B)CN-carbon nanotube composite as Li-ion battery anode.
    Bhandavat R; Singh G
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5092-7. PubMed ID: 23030550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries.
    Yu Y; Luo Y; Wu H; Jiang K; Li Q; Fan S; Li J; Wang J
    Nanoscale; 2018 Nov; 10(42):19972-19978. PubMed ID: 30349918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rational Design of Hierarchical Carbon/Mesoporous Silicon Composite Sponges as High-Performance Flexible Energy Storage Electrodes.
    Yang Y; Yang X; Chen S; Zou M; Li Z; Cao A; Yuan Q
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22819-22825. PubMed ID: 28665580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Core-shell structured MnSiO
    Feng J; Li Q; Wang H; Zhang M; Yang X; Yuan R; Chai Y
    Dalton Trans; 2018 Apr; 47(15):5328-5334. PubMed ID: 29589020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chamber-confined silicon-carbon nanofiber composites for prolonged cycling life of Li-ion batteries.
    Fu K; Lu Y; Dirican M; Chen C; Yanilmaz M; Shi Q; Bradford PD; Zhang X
    Nanoscale; 2014 Jul; 6(13):7489-95. PubMed ID: 24882561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Focusing on the Subsequent Coulombic Efficiencies of SiO
    Sun Q; Li J; Hao C; Ci L
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14284-14292. PubMed ID: 35298133
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanowire Array-Coated Flexible Substrate to Accommodate Lithium Plating for Stable Lithium-Metal Anodes and Flexible Lithium-Organic Batteries.
    Zhang M; Lu R; Yuan H; Amin K; Mao L; Yan W; Wei Z
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20873-20880. PubMed ID: 31074604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scalable Synthesis and Electrochemical Properties of Porous Si-CoSi
    Seo H; Yang HR; Yang Y; Kim K; Kim SH; Lee H; Kim JH
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An SiO
    Xue H; Cheng Y; Gu Q; Wang Z; Shen Y; Yin D; Wang L; Huang G
    Nanoscale; 2021 Feb; 13(6):3808-3816. PubMed ID: 33565538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large areal capacity all-in-one lithium-ion battery based on boron-doped silicon/carbon hybrid anode material and cellulose framework.
    Zhou W; Chen J; Xu X; Han X; Chen M; Yang L; Hirano SI
    J Colloid Interface Sci; 2022 Apr; 612():679-688. PubMed ID: 35032925
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries.
    Chen Y; Zeng S; Qian J; Wang Y; Cao Y; Yang H; Ai X
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3508-12. PubMed ID: 24467155
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pentafluorophenyl Isocyanate as an Effective Electrolyte Additive for Improved Performance of Silicon-Based Lithium-Ion Full Cells.
    Nölle R; Achazi AJ; Kaghazchi P; Winter M; Placke T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28187-28198. PubMed ID: 30044617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Situ Wrapping Si Nanoparticles with 2D Carbon Nanosheets as High-Areal-Capacity Anode for Lithium-Ion Batteries.
    Yan L; Liu J; Wang Q; Sun M; Jiang Z; Liang C; Pan F; Lin Z
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38159-38164. PubMed ID: 29053916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.