These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30619838)

  • 21. Nano Polymorphism-Enabled Redox Electrodes for Rechargeable Batteries.
    Mei J; Wang J; Gu H; Du Y; Wang H; Yamauchi Y; Liao T; Sun Z; Yin Z
    Adv Mater; 2021 Feb; 33(8):e2004920. PubMed ID: 33382163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advances and Challenges in Electrolyte Development for Magnesium-Sulfur Batteries: A Comprehensive Review.
    Sheng L; Feng J; Gong M; Zhang L; Harding J; Hao Z; Wang FR
    Molecules; 2024 Mar; 29(6):. PubMed ID: 38542871
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the Feasibility of Practical Mg-S Batteries: Practical Limitations Associated with Metallic Magnesium Anodes.
    Salama M; Attias R; Hirsch B; Yemini R; Gofer Y; Noked M; Aurbach D
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36910-36917. PubMed ID: 30295459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Research progress of organic liquid electrolyte for sodium ion battery.
    Zhang J; Li J; Wang H; Wang M
    Front Chem; 2023; 11():1253959. PubMed ID: 37780988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organic Positive Materials for Magnesium Batteries: A Review.
    Tran NA; Do Van Thanh N; Le MLP
    Chemistry; 2021 Jun; 27(36):9198-9217. PubMed ID: 33792101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Review on organosulfur materials for rechargeable lithium batteries.
    Shadike Z; Tan S; Wang QC; Lin R; Hu E; Qu D; Yang XQ
    Mater Horiz; 2021 Feb; 8(2):471-500. PubMed ID: 34821265
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From Liquid to Solid-State Batteries: Li-Rich Mn-Based Layered Oxides as Emerging Cathodes with High Energy Density.
    Kong WJ; Zhao CZ; Sun S; Shen L; Huang XY; Xu P; Lu Y; Huang WZ; Huang JQ; Zhang Q
    Adv Mater; 2024 Apr; 36(14):e2310738. PubMed ID: 38054396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anthraquinone-Based Polymer as Cathode in Rechargeable Magnesium Batteries.
    Bitenc J; Pirnat K; Bančič T; Gaberšček M; Genorio B; Randon-Vitanova A; Dominko R
    ChemSusChem; 2015 Dec; 8(24):4128-32. PubMed ID: 26610185
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in cathode engineering to enable reversible room-temperature aluminium-sulfur batteries.
    Sungjemmenla ; Soni CB; Kumar V
    Nanoscale Adv; 2021 Mar; 3(6):1569-1581. PubMed ID: 36132559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emerging Lithiated Organic Cathode Materials for Lithium-Ion Full Batteries.
    Lu Y; Zhang Q; Li F; Chen J
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202216047. PubMed ID: 36445787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quinone Based Materials as Renewable High Energy Density Cathode Materials for Rechargeable Magnesium Batteries.
    Bitenc J; Pavčnik T; Košir U; Pirnat K
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31973193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Capacity Fade Analysis of Sulfur Cathodes in Lithium-Sulfur Batteries.
    Yan J; Liu X; Li B
    Adv Sci (Weinh); 2016 Dec; 3(12):1600101. PubMed ID: 27981001
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic Effects of Electrodes and Electrolytes in Metal-Sulfur Batteries: Progress and Prospective.
    Zeng L; Zhu J; Chu PK; Huang L; Wang J; Zhou G; Yu XF
    Adv Mater; 2022 Dec; 34(49):e2204636. PubMed ID: 35903947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Robust, Ultra-Tough Flexible Cathodes for High-Energy Li-S Batteries.
    Chung SH; Chang CH; Manthiram A
    Small; 2016 Feb; 12(7):939-50. PubMed ID: 26715383
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Organic Cathode Materials for Rechargeable Aluminum-Ion Batteries.
    Huang Z; Du X; Ma M; Wang S; Xie Y; Meng Y; You W; Xiong L
    ChemSusChem; 2023 May; 16(9):e202202358. PubMed ID: 36732888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes.
    Bhatt MD; O'Dwyer C
    Phys Chem Chem Phys; 2015 Feb; 17(7):4799-844. PubMed ID: 25613366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transition-Metal Sulfides for High-Performance Lithium Sulfide Cathodes in All-Solid-State Lithium-Sulfur Batteries.
    Gamo H; Hikima K; Matsuda A
    ACS Omega; 2023 Dec; 8(48):45557-45565. PubMed ID: 38075765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aluminum and lithium sulfur batteries: a review of recent progress and future directions.
    Akgenc B; Sarikurt S; Yagmurcukardes M; Ersan F
    J Phys Condens Matter; 2021 May; 33(25):. PubMed ID: 33882469
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Surface Modification for Carbon Cathode Materials on Charge-Discharge Performance of Li-Air Batteries.
    Fukushima K; Lee SY; Tanaka K; Sasaki K; Ishizaki T
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Organic Cathode Materials for Rechargeable Zinc Batteries: Mechanisms, Challenges, and Perspectives.
    Cui J; Guo Z; Yi J; Liu X; Wu K; Liang P; Li Q; Liu Y; Wang Y; Xia Y; Zhang J
    ChemSusChem; 2020 May; 13(9):2160-2185. PubMed ID: 32043825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.