BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30620016)

  • 1. A DFT study of direct furfural conversion to 2-methylfuran on the Ru/Co
    Dong H; Zheng Y; Hu P
    Phys Chem Chem Phys; 2019 Jan; 21(3):1597-1605. PubMed ID: 30620016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DFT study of furfural conversion on a Re/Pt bimetallic surface: synergetic effect on the promotion of hydrodeoxygenation.
    Dong H; Zheng Y; Hu P
    Phys Chem Chem Phys; 2019 Apr; 21(16):8384-8393. PubMed ID: 30942235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical insight into furfural conversion catalyzed on the Ni(111) surface.
    Ren G; Wang G; Mei H; Xu Y; Huang L
    Phys Chem Chem Phys; 2019 Nov; 21(42):23685-23696. PubMed ID: 31631194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermochemistry and kinetic analysis for the conversion of furfural to valuable added products.
    Pino N; López D; Espinal JF
    J Mol Model; 2019 Jan; 25(1):26. PubMed ID: 30612236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the Reaction Mechanisms of Furfural Hydrodeoxygenation on a CuNiCu(111) Bimetallic Catalyst Surface from Computation.
    Shi Y
    ACS Omega; 2020 Jul; 5(29):18040-18049. PubMed ID: 32743178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodeoxygenation of furfural to 2-methylfuran over Cu-Co confined by hollow carbon cage catalyst enhanced by optimized charge transfer and alloy structure.
    Dou S; Ma L; Dong Y; Zhu Q; Kong X
    J Colloid Interface Sci; 2024 Jun; 663():345-357. PubMed ID: 38412720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic Hydrogenation and Hydrodeoxygenation of Furfural over Pt(111): A Model System for the Rational Design and Operation of Practical Biomass Conversion Catalysts.
    Taylor MJ; Jiang L; Reichert J; Papageorgiou AC; Beaumont SK; Wilson K; Lee AF; Barth JV; Kyriakou G
    J Phys Chem C Nanomater Interfaces; 2017 Apr; 121(15):8490-8497. PubMed ID: 29225721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts.
    Panagiotopoulou P; Martin N; Vlachos DG
    ChemSusChem; 2015 Jun; 8(12):2046-54. PubMed ID: 26013846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the Ring-Opening of Biomass-Derived Furanics over Carbon-Supported Ruthenium.
    Gilkey MJ; Mironenko AV; Yang L; Vlachos DG; Xu B
    ChemSusChem; 2016 Nov; 9(21):3113-3121. PubMed ID: 27739655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of mesoporous oxides and their support effects on Pt nanoparticle catalysts in catalytic hydrogenation of furfural.
    An K; Musselwhite N; Kennedy G; Pushkarev VV; Robert Baker L; Somorjai GA
    J Colloid Interface Sci; 2013 Feb; 392():122-128. PubMed ID: 23201064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper-Palladium Catalysts.
    Chang X; Liu AF; Cai B; Luo JY; Pan H; Huang YB
    ChemSusChem; 2016 Dec; 9(23):3330-3337. PubMed ID: 27863073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafine Ruthenium Clusters Shell-Embedded Hollow Carbon Spheres as Nanoreactors for Channel Microenvironment-Modulated Furfural Tandem Hydrogenation.
    Yu Z; Ji N; Xiong J; Han Y; Li X; Zhang R; Qiao Y; Zhang M; Lu X
    Small; 2022 Aug; 18(32):e2201361. PubMed ID: 35760757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High structure sensitivity of vapor-phase furfural decarbonylation/hydrogenation reaction network as a function of size and shape of Pt nanoparticles.
    Pushkarev VV; Musselwhite N; An K; Alayoglu S; Somorjai GA
    Nano Lett; 2012 Oct; 12(10):5196-201. PubMed ID: 22938198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical Hydrogenation of Furfural in Aqueous Acetic Acid Media with Enhanced 2-Methylfuran Selectivity Using CuPd Bimetallic Catalysts.
    Zhou P; Li L; Mosali VSS; Chen Y; Luan P; Gu Q; Turner DR; Huang L; Zhang J
    Angew Chem Int Ed Engl; 2022 Mar; 61(13):e202117809. PubMed ID: 35043530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the Role of Base Species on Reversed Cu Catalyst in Ring Opening of Furan Compounds to 1, 2-Pentanediol.
    Li H; Nie X; Du H; Zhao Y; Mu J; Zhang ZC
    ChemSusChem; 2024 Jan; 17(1):e202300880. PubMed ID: 37697441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symmetry aspects of H2 splitting by five-coordinate d6 ruthenium amides, and calculations on acetophenone hydrogenation, ruthenium alkoxide formation, and subsequent hydrogenolysis in a model trans-Ru(H)2(diamine)(diphosphine) system.
    Hasanayn F; Morris RH
    Inorg Chem; 2012 Oct; 51(20):10808-18. PubMed ID: 23031090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Support Oxygen Vacancies in the Gas Phase Hydrogenation of Furfural over Gold.
    Li M; Collado L; Cárdenas-Lizana F; Keane MA
    Catal Letters; 2018; 148(1):90-96. PubMed ID: 31258285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose.
    Li G; Li N; Wang Z; Li C; Wang A; Wang X; Cong Y; Zhang T
    ChemSusChem; 2012 Oct; 5(10):1958-66. PubMed ID: 22907772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers.
    Pang SH; Schoenbaum CA; Schwartz DK; Medlin JW
    Nat Commun; 2013; 4():2448. PubMed ID: 24025780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water.
    Chen X; Zhang L; Zhang B; Guo X; Mu X
    Sci Rep; 2016 Jun; 6():28558. PubMed ID: 27328834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.