These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 30620016)
1. A DFT study of direct furfural conversion to 2-methylfuran on the Ru/Co Dong H; Zheng Y; Hu P Phys Chem Chem Phys; 2019 Jan; 21(3):1597-1605. PubMed ID: 30620016 [TBL] [Abstract][Full Text] [Related]
2. DFT study of furfural conversion on a Re/Pt bimetallic surface: synergetic effect on the promotion of hydrodeoxygenation. Dong H; Zheng Y; Hu P Phys Chem Chem Phys; 2019 Apr; 21(16):8384-8393. PubMed ID: 30942235 [TBL] [Abstract][Full Text] [Related]
3. A theoretical insight into furfural conversion catalyzed on the Ni(111) surface. Ren G; Wang G; Mei H; Xu Y; Huang L Phys Chem Chem Phys; 2019 Nov; 21(42):23685-23696. PubMed ID: 31631194 [TBL] [Abstract][Full Text] [Related]
4. Thermochemistry and kinetic analysis for the conversion of furfural to valuable added products. Pino N; López D; Espinal JF J Mol Model; 2019 Jan; 25(1):26. PubMed ID: 30612236 [TBL] [Abstract][Full Text] [Related]
5. Exploring the Reaction Mechanisms of Furfural Hydrodeoxygenation on a CuNiCu(111) Bimetallic Catalyst Surface from Computation. Shi Y ACS Omega; 2020 Jul; 5(29):18040-18049. PubMed ID: 32743178 [TBL] [Abstract][Full Text] [Related]
6. Hydrodeoxygenation of furfural to 2-methylfuran over Cu-Co confined by hollow carbon cage catalyst enhanced by optimized charge transfer and alloy structure. Dou S; Ma L; Dong Y; Zhu Q; Kong X J Colloid Interface Sci; 2024 Jun; 663():345-357. PubMed ID: 38412720 [TBL] [Abstract][Full Text] [Related]
7. Catalytic Hydrogenation and Hydrodeoxygenation of Furfural over Pt(111): A Model System for the Rational Design and Operation of Practical Biomass Conversion Catalysts. Taylor MJ; Jiang L; Reichert J; Papageorgiou AC; Beaumont SK; Wilson K; Lee AF; Barth JV; Kyriakou G J Phys Chem C Nanomater Interfaces; 2017 Apr; 121(15):8490-8497. PubMed ID: 29225721 [TBL] [Abstract][Full Text] [Related]
8. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts. Panagiotopoulou P; Martin N; Vlachos DG ChemSusChem; 2015 Jun; 8(12):2046-54. PubMed ID: 26013846 [TBL] [Abstract][Full Text] [Related]
9. Insights into the Ring-Opening of Biomass-Derived Furanics over Carbon-Supported Ruthenium. Gilkey MJ; Mironenko AV; Yang L; Vlachos DG; Xu B ChemSusChem; 2016 Nov; 9(21):3113-3121. PubMed ID: 27739655 [TBL] [Abstract][Full Text] [Related]
10. Preparation of mesoporous oxides and their support effects on Pt nanoparticle catalysts in catalytic hydrogenation of furfural. An K; Musselwhite N; Kennedy G; Pushkarev VV; Robert Baker L; Somorjai GA J Colloid Interface Sci; 2013 Feb; 392():122-128. PubMed ID: 23201064 [TBL] [Abstract][Full Text] [Related]
11. Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper-Palladium Catalysts. Chang X; Liu AF; Cai B; Luo JY; Pan H; Huang YB ChemSusChem; 2016 Dec; 9(23):3330-3337. PubMed ID: 27863073 [TBL] [Abstract][Full Text] [Related]
12. Ultrafine Ruthenium Clusters Shell-Embedded Hollow Carbon Spheres as Nanoreactors for Channel Microenvironment-Modulated Furfural Tandem Hydrogenation. Yu Z; Ji N; Xiong J; Han Y; Li X; Zhang R; Qiao Y; Zhang M; Lu X Small; 2022 Aug; 18(32):e2201361. PubMed ID: 35760757 [TBL] [Abstract][Full Text] [Related]
13. High structure sensitivity of vapor-phase furfural decarbonylation/hydrogenation reaction network as a function of size and shape of Pt nanoparticles. Pushkarev VV; Musselwhite N; An K; Alayoglu S; Somorjai GA Nano Lett; 2012 Oct; 12(10):5196-201. PubMed ID: 22938198 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical Hydrogenation of Furfural in Aqueous Acetic Acid Media with Enhanced 2-Methylfuran Selectivity Using CuPd Bimetallic Catalysts. Zhou P; Li L; Mosali VSS; Chen Y; Luan P; Gu Q; Turner DR; Huang L; Zhang J Angew Chem Int Ed Engl; 2022 Mar; 61(13):e202117809. PubMed ID: 35043530 [TBL] [Abstract][Full Text] [Related]
15. Understanding the Role of Base Species on Reversed Cu Catalyst in Ring Opening of Furan Compounds to 1, 2-Pentanediol. Li H; Nie X; Du H; Zhao Y; Mu J; Zhang ZC ChemSusChem; 2024 Jan; 17(1):e202300880. PubMed ID: 37697441 [TBL] [Abstract][Full Text] [Related]
16. Symmetry aspects of H2 splitting by five-coordinate d6 ruthenium amides, and calculations on acetophenone hydrogenation, ruthenium alkoxide formation, and subsequent hydrogenolysis in a model trans-Ru(H)2(diamine)(diphosphine) system. Hasanayn F; Morris RH Inorg Chem; 2012 Oct; 51(20):10808-18. PubMed ID: 23031090 [TBL] [Abstract][Full Text] [Related]
17. Role of Support Oxygen Vacancies in the Gas Phase Hydrogenation of Furfural over Gold. Li M; Collado L; Cárdenas-Lizana F; Keane MA Catal Letters; 2018; 148(1):90-96. PubMed ID: 31258285 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose. Li G; Li N; Wang Z; Li C; Wang A; Wang X; Cong Y; Zhang T ChemSusChem; 2012 Oct; 5(10):1958-66. PubMed ID: 22907772 [TBL] [Abstract][Full Text] [Related]
19. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers. Pang SH; Schoenbaum CA; Schwartz DK; Medlin JW Nat Commun; 2013; 4():2448. PubMed ID: 24025780 [TBL] [Abstract][Full Text] [Related]
20. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water. Chen X; Zhang L; Zhang B; Guo X; Mu X Sci Rep; 2016 Jun; 6():28558. PubMed ID: 27328834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]