These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 30620130)
1. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Wang G; Lan Y; Qi H; Chen P; Hewitt A; Han Y Pest Manag Sci; 2019 Jun; 75(6):1546-1555. PubMed ID: 30620130 [TBL] [Abstract][Full Text] [Related]
2. Low-drift nozzles vs. standard nozzles for pesticide application in the biological efficacy trials of pesticides in apple pest and disease control. Doruchowski G; Świechowski W; Masny S; Maciesiak A; Tartanus M; Bryk H; Hołownicki R Sci Total Environ; 2017 Jan; 575():1239-1246. PubMed ID: 27720255 [TBL] [Abstract][Full Text] [Related]
3. Spray performance and control efficacy against pests in paddy rice by UAV-based pesticide application: effects of atomization, UAV configuration and flight velocity. Wongsuk S; Qi P; Wang C; Zeng A; Sun F; Yu F; Zhao X; Xiongkui H Pest Manag Sci; 2024 Apr; 80(4):2072-2084. PubMed ID: 38129096 [TBL] [Abstract][Full Text] [Related]
4. Assessing the efficiency of UAV for pesticide application in disease management of peanut crop. Shan C; Wang G; Wang H; Wu L; Song C; Hussain M; Wang H; Lan Y Pest Manag Sci; 2024 Sep; 80(9):4505-4515. PubMed ID: 38703046 [TBL] [Abstract][Full Text] [Related]
5. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Wang C; Herbst A; Zeng A; Wongsuk S; Qiao B; Qi P; Bonds J; Overbeck V; Yang Y; Gao W; He X Sci Total Environ; 2021 Jul; 777():146181. PubMed ID: 33689892 [TBL] [Abstract][Full Text] [Related]
6. Comparison of UAV and fixed-wing aerial application for alfalfa insect pest control: evaluating efficacy, residues, and spray quality. Li X; Giles DK; Andaloro JT; Long R; Lang EB; Watson LJ; Qandah I Pest Manag Sci; 2021 Nov; 77(11):4980-4992. PubMed ID: 34216079 [TBL] [Abstract][Full Text] [Related]
7. Spray performance evaluation of a six-rotor unmanned aerial vehicle sprayer for pesticide application using an orchard operation mode in apple orchards. Wang C; Liu Y; Zhang Z; Han L; Li Y; Zhang H; Wongsuk S; Li Y; Wu X; He X Pest Manag Sci; 2022 Jun; 78(6):2449-2466. PubMed ID: 35306733 [TBL] [Abstract][Full Text] [Related]
8. Assessing the application of spot spray in Nanguo pear orchards: Effect of nozzle type, spray volume rate and adjuvant. Guo S; Yao W; Xu T; Ma H; Sun M; Chen C; Lan Y Pest Manag Sci; 2022 Aug; 78(8):3564-3575. PubMed ID: 35598076 [TBL] [Abstract][Full Text] [Related]
9. Field evaluation of a six-rotor unmanned agricultural aerial sprayer: effects of application parameters on spray deposition and control efficacy against rice planthopper. Huang Z; Wang C; Wongsuk S; Qi P; Liu L; Qiao B; Zhong L; He X Pest Manag Sci; 2023 Nov; 79(11):4664-4678. PubMed ID: 37448099 [TBL] [Abstract][Full Text] [Related]
10. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Wang G; Han Y; Li X; Andaloro J; Chen P; Hoffmann WC; Han X; Chen S; Lan Y Sci Total Environ; 2020 Oct; 737():139793. PubMed ID: 32526578 [TBL] [Abstract][Full Text] [Related]
11. Study on droplet deposition characteristics and application of small and medium crown garden plants sprayed by UAV sprayer. Gao J; Bo P; Lan Y; Sun L; Liu H; Li X; Wang G; Wang H Front Plant Sci; 2024; 15():1343793. PubMed ID: 38828225 [TBL] [Abstract][Full Text] [Related]
12. Tank-mix adjuvants improved spray performance and biological efficacy in rice insecticide application with unmanned aerial vehicle sprayer. Wang L; Xia S; Zhang H; Li Y; Huang Z; Qiao B; Zhong L; Cao M; He X; Wang C; Liu Y Pest Manag Sci; 2024 Sep; 80(9):4371-4385. PubMed ID: 38662472 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of an unmanned aerial vehicle as a new method of pesticide application for almond crop protection. Li X; Giles DK; Niederholzer FJ; Andaloro JT; Lang EB; Watson LJ Pest Manag Sci; 2021 Jan; 77(1):527-537. PubMed ID: 32816397 [TBL] [Abstract][Full Text] [Related]
14. Using tank-mix adjuvant improves the physicochemical properties and dosage delivery to reduce the use of pesticides in unmanned aerial vehicles for plant protection in wheat. Zhao R; Yu M; Sun Z; Li LJ; Shang HY; Xi WJ; Li B; Li YY; Xu Y; Wu XM Pest Manag Sci; 2022 Jun; 78(6):2512-2522. PubMed ID: 35318795 [TBL] [Abstract][Full Text] [Related]
15. Control Efficacy of UAV-Based Ultra-Low-Volume Application of Pesticide in Chestnut Orchards. Arakawa T; Kamio S Plants (Basel); 2023 Jul; 12(14):. PubMed ID: 37514212 [TBL] [Abstract][Full Text] [Related]
16. Optimization of the spray application technology in bay laurel (Laurus nobilis). Nuyttens D; Braekman P; Foque D Commun Agric Appl Biol Sci; 2009; 74(1):85-90. PubMed ID: 20218514 [TBL] [Abstract][Full Text] [Related]
17. Droplet distribution in cotton canopy using single-rotor and four-rotor unmanned aerial vehicles. Meng Y; Ma Y; Wang Z; Hu H PeerJ; 2022; 10():e13572. PubMed ID: 35722263 [TBL] [Abstract][Full Text] [Related]
18. Determining the drift potential of Venturi nozzles compared with standard nozzles across three insecticide spray solutions in a wind tunnel. Ferguson JC; Chechetto RG; O'Donnell CC; Dorr GJ; Moore JH; Baker GJ; Powis KJ; Hewitt AJ Pest Manag Sci; 2016 Aug; 72(8):1460-6. PubMed ID: 26732308 [TBL] [Abstract][Full Text] [Related]
19. Swath pattern analysis from a multi-rotor unmanned aerial vehicle configured for pesticide application. Richardson B; Rolando CA; Somchit C; Dunker C; Strand TM; Kimberley MO Pest Manag Sci; 2020 Apr; 76(4):1282-1290. PubMed ID: 31595645 [TBL] [Abstract][Full Text] [Related]
20. Effect of spray angle and spray volume on deposition of a medium droplet spray with air support in ivy pot plants. Foqué D; Pieters JG; Nuyttens D Pest Manag Sci; 2014 Mar; 70(3):427-39. PubMed ID: 23716397 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]