These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 30620130)
21. UAV-spray application in vineyards: Flight modes and spray system adjustment effects on canopy deposit, coverage, and off-target losses. Biglia A; Grella M; Bloise N; Comba L; Mozzanini E; Sopegno A; Pittarello M; Dicembrini E; Alcatrão LE; Guglieri G; Balsari P; Aimonino DR; Gay P Sci Total Environ; 2022 Nov; 845():157292. PubMed ID: 35820523 [TBL] [Abstract][Full Text] [Related]
22. A Framework for Agricultural Pest and Disease Monitoring Based on Internet-of-Things and Unmanned Aerial Vehicles. Gao D; Sun Q; Hu B; Zhang S Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182732 [TBL] [Abstract][Full Text] [Related]
23. Design of Plant Protection UAV Variable Spray System Based on Neural Networks. Wen S; Zhang Q; Yin X; Lan Y; Zhang J; Ge Y Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30841563 [TBL] [Abstract][Full Text] [Related]
24. Research on Methods Decreasing Pesticide Waste Based on Plant Protection Unmanned Aerial Vehicles: A Review. Hu H; Kaizu Y; Huang J; Furuhashi K; Zhang H; Li M; Imou K Front Plant Sci; 2022; 13():811256. PubMed ID: 35873963 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of the droplet deposition and control effect of a special adjuvant for unmanned aerial vehicle (UAV) sprayers. Wang X; Zhang Y; Hu H; Liu B; Wang F; Zhang Y; Wang W; Li X; Xu W J Pestic Sci; 2023 Aug; 48(3):78-85. PubMed ID: 37745170 [TBL] [Abstract][Full Text] [Related]
26. Evaluating the use of unmanned aerial vehicles for spray applications in mountain Nanguo pear orchards. Guo S; Chen C; Du G; Yu F; Yao W; Lan Y Pest Manag Sci; 2024 Jul; 80(7):3590-3602. PubMed ID: 38451056 [TBL] [Abstract][Full Text] [Related]
27. Effects of tank-mix adjuvants on physicochemical properties and dosage delivery at low dilution ratios for unmanned aerial vehicle application in paddy fields. Zhao R; Sun Z; Bird N; Gu YC; Xu Y; Zhang ZH; Wu XM Pest Manag Sci; 2022 Apr; 78(4):1582-1593. PubMed ID: 34984795 [TBL] [Abstract][Full Text] [Related]
28. Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard. Li L; Hu Z; Liu Q; Yi T; Han P; Zhang R; Pan L Front Plant Sci; 2022; 13():981494. PubMed ID: 36247584 [TBL] [Abstract][Full Text] [Related]
29. Comparison of Droplet Size, Coverage, and Drift Potential from UAV Application Methods and Ground Application Methods on Row Crops. Gibbs J; Peters TM; Heck LP Trans ASABE; 2021; 64(3):819-828. PubMed ID: 37667776 [TBL] [Abstract][Full Text] [Related]
30. Biocidal radiuses of cycloxaprid, imidacloprid and lambda-cyhalothrin droplets controlling against cotton aphid (Aphis gossypii) using an unmanned aerial vehicle. Nahiyoon SA; Cui L; Yang D; Yan X; Rui C; Yuan H Pest Manag Sci; 2020 Sep; 76(9):3020-3029. PubMed ID: 32248619 [TBL] [Abstract][Full Text] [Related]
31. Determination of the effective swath of a plant protection UAV adapted to mist nozzles in mountain Nangguo pear orchards. Liu Y; Yao W; Guo S; Yan H; Yu Z; Meng S; Chen D; Chen C Front Plant Sci; 2024; 15():1336580. PubMed ID: 38974984 [TBL] [Abstract][Full Text] [Related]
32. Risk assessment of environmental and bystander exposure from agricultural unmanned aerial vehicle sprayers in golden coconut plantations: Effects of droplet size and spray volume. Lan X; Wang J; Chen P; Liang Q; Zhang L; Ma C Ecotoxicol Environ Saf; 2024 Sep; 282():116675. PubMed ID: 38971099 [TBL] [Abstract][Full Text] [Related]
33. Evaluationof compact air-induction flat fan nozzles for herbicide applications: Spray drift and biological efficacy. Wang S; Li X; Nuyttens D; Zhang L; Liu Y; Li X Front Plant Sci; 2023; 14():1018626. PubMed ID: 36818846 [TBL] [Abstract][Full Text] [Related]
34. Control Efficacy and Deposition Characteristics of an Unmanned Aerial Spray System Low-Volume Application on Corn Fall Armyworm Shan C; Wu J; Song C; Chen S; Wang J; Wang H; Wang G; Lan Y Front Plant Sci; 2022; 13():900939. PubMed ID: 36176691 [TBL] [Abstract][Full Text] [Related]
35. Optimizing UAV spray parameters to improve precise control of tobacco pests at different growth stages. Shi X; Du Y; Liu X; Liu C; Hou Q; Chen L; Yong R; Ma J; Yang D; Yuan H; Guo J; Liu P; Yan X Pest Manag Sci; 2024 Nov; 80(11):5809-5819. PubMed ID: 39007292 [TBL] [Abstract][Full Text] [Related]
36. Model and design of real-time control system for aerial variable spray. Liu Y; Ru Y; Duan L; Qu R PLoS One; 2020; 15(7):e0235700. PubMed ID: 32701965 [TBL] [Abstract][Full Text] [Related]
37. DRIFT POTENTIAL OF TILTED SHIELDED ROTARY ATOMISERS BASED ON WIND TUNNEL MEASUREMENTS. Salah SO; Massinon M; De Cock N; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2015; 80(3):303-12. PubMed ID: 27141728 [TBL] [Abstract][Full Text] [Related]
38. Integration of remote-weed mapping and an autonomous spraying unmanned aerial vehicle for site-specific weed management. Hunter JE; Gannon TW; Richardson RJ; Yelverton FH; Leon RG Pest Manag Sci; 2020 Apr; 76(4):1386-1392. PubMed ID: 31622004 [TBL] [Abstract][Full Text] [Related]
39. Evaluation of unmanned aerial vehicle for effective spraying application in coconut plantations. Pandiselvam R; Daliyamol ; Imran S S; Hegde V; Sujithra M; Prathibha PS; Prathibha VH; Hebbar KB Heliyon; 2024 Oct; 10(19):e38569. PubMed ID: 39397987 [TBL] [Abstract][Full Text] [Related]
40. Challenges and opportunities of unmanned aerial vehicles as a new tool for crop pest control. Zhang R; Hewitt AJ; Chen L; Li L; Tang Q Pest Manag Sci; 2023 Nov; 79(11):4123-4131. PubMed ID: 37494136 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]