These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 30620349)
1. Electromagnetic and acoustic double-shielding graphene-based metastructures. Li Y; Sun L; Xu F; Wang S; Peng Q; Yang Z; He X; Li Y Nanoscale; 2019 Jan; 11(4):1692-1699. PubMed ID: 30620349 [TBL] [Abstract][Full Text] [Related]
2. Interfused core-shell heterogeneous graphene/MXene fiber aerogel for high-performance and durable electromagnetic interference shielding. Zheng X; Tang J; Wang P; Wang Z; Zou L; Li C J Colloid Interface Sci; 2022 Dec; 628(Pt A):994-1003. PubMed ID: 35973264 [TBL] [Abstract][Full Text] [Related]
3. Multifunctional Graphene Microstructures Inspired by Honeycomb for Ultrahigh Performance Electromagnetic Interference Shielding and Wearable Applications. Xu J; Li R; Ji S; Zhao B; Cui T; Tan X; Gou G; Jian J; Xu H; Qiao Y; Yang Y; Zhang S; Ren TL ACS Nano; 2021 May; 15(5):8907-8918. PubMed ID: 33881822 [TBL] [Abstract][Full Text] [Related]
4. A self-assembled graphene/polyurethane sponge for excellent electromagnetic interference shielding performance. Hu Z; Ji X; Li B; Luo Y RSC Adv; 2019 Aug; 9(44):25829-25835. PubMed ID: 35530052 [TBL] [Abstract][Full Text] [Related]
5. Highly Stretchable Electromagnetic Interference Shielding Materials Made with Conductive Microcoils Confined to a Honeycomb Structure. Liu C; Cai J; Dang P; Li X; Zhang D ACS Appl Mater Interfaces; 2020 Mar; 12(10):12101-12108. PubMed ID: 32069019 [TBL] [Abstract][Full Text] [Related]
7. Transparent Conducting Graphene Hybrid Films To Improve Electromagnetic Interference (EMI) Shielding Performance of Graphene. Ma L; Lu Z; Tan J; Liu J; Ding X; Black N; Li T; Gallop J; Hao L ACS Appl Mater Interfaces; 2017 Oct; 9(39):34221-34229. PubMed ID: 28892351 [TBL] [Abstract][Full Text] [Related]
8. Flexible, Ultralight, and Mechanically Robust Waterborne Polyurethane/Ti Wang Y; Qi Q; Yin G; Wang W; Yu D ACS Appl Mater Interfaces; 2021 May; 13(18):21831-21843. PubMed ID: 33909972 [TBL] [Abstract][Full Text] [Related]
9. Beyond Ti Han M; Shuck CE; Rakhmanov R; Parchment D; Anasori B; Koo CM; Friedman G; Gogotsi Y ACS Nano; 2020 Apr; 14(4):5008-5016. PubMed ID: 32163265 [TBL] [Abstract][Full Text] [Related]
10. Graphene-Based Sandwich Structures for Frequency Selectable Electromagnetic Shielding. Song WL; Gong C; Li H; Cheng XD; Chen M; Yuan X; Chen H; Yang Y; Fang D ACS Appl Mater Interfaces; 2017 Oct; 9(41):36119-36129. PubMed ID: 28945066 [TBL] [Abstract][Full Text] [Related]
11. N-Doped Honeycomb-like Ag@N-Ti Wang X; Zhang F; Hu F; Li Y; Chen Y; Wang H; Min Z; Zhang R Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080005 [TBL] [Abstract][Full Text] [Related]
12. Multi-reflection-enhanced electromagnetic interference shielding performance of conductive nanocomposite coatings on fabrics. Lan C; Zou L; Wang N; Qiu Y; Ma Y J Colloid Interface Sci; 2021 May; 590():467-475. PubMed ID: 33561596 [TBL] [Abstract][Full Text] [Related]
13. Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding. Liu J; Zhang HB; Sun R; Liu Y; Liu Z; Zhou A; Yu ZZ Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28799671 [TBL] [Abstract][Full Text] [Related]
14. Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance. Lu Z; Ma L; Tan J; Wang H; Ding X Nanoscale; 2016 Sep; 8(37):16684-16693. PubMed ID: 27714109 [TBL] [Abstract][Full Text] [Related]
15. Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding. Han G; Ma Z; Zhou B; He C; Wang B; Feng Y; Ma J; Sun L; Liu C J Colloid Interface Sci; 2021 Feb; 583():571-578. PubMed ID: 33038606 [TBL] [Abstract][Full Text] [Related]
16. Lightweight and flexible hybrid film based on delicate design of electrospun nanofibers for high-performance electromagnetic interference shielding. Huang L; Li J; Li Y; He X; Yuan Y Nanoscale; 2019 Apr; 11(17):8616-8625. PubMed ID: 30994685 [TBL] [Abstract][Full Text] [Related]
17. Light and Strong Hierarchical Porous SiC Foam for Efficient Electromagnetic Interference Shielding and Thermal Insulation at Elevated Temperatures. Liang C; Wang Z; Wu L; Zhang X; Wang H; Wang Z ACS Appl Mater Interfaces; 2017 Sep; 9(35):29950-29957. PubMed ID: 28812868 [TBL] [Abstract][Full Text] [Related]
18. Gradient Structure Design of Flexible Waterborne Polyurethane Conductive Films for Ultraefficient Electromagnetic Shielding with Low Reflection Characteristic. Xu Y; Yang Y; Yan DX; Duan H; Zhao G; Liu Y ACS Appl Mater Interfaces; 2018 Jun; 10(22):19143-19152. PubMed ID: 29766720 [TBL] [Abstract][Full Text] [Related]
19. Ultrahigh Conductive Copper/Large Flake Size Graphene Heterostructure Thin-Film with Remarkable Electromagnetic Interference Shielding Effectiveness. Wang Z; Mao B; Wang Q; Yu J; Dai J; Song R; Pu Z; He D; Wu Z; Mu S Small; 2018 May; 14(20):e1704332. PubMed ID: 29665217 [TBL] [Abstract][Full Text] [Related]
20. High-Compressive, Elastic, and Wearable Cellulose Nanofiber-Based Carbon Aerogels for Efficient Electromagnetic Interference Shielding. Zhang J; Guo W; Shen S; Zhang Q; Chen X; Wang Z; Shao K; Sun Q; Li C ACS Appl Mater Interfaces; 2024 Apr; 16(13):16612-16621. PubMed ID: 38509757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]