These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 30620581)
1. Understanding Carrier Transport in Organic Semiconductors: Computation of Charge Mobility Considering Quantum Nuclear Tunneling and Delocalization Effects. Jiang Y; Geng H; Li W; Shuai Z J Chem Theory Comput; 2019 Mar; 15(3):1477-1491. PubMed ID: 30620581 [TBL] [Abstract][Full Text] [Related]
2. Theoretical Prediction of Isotope Effects on Charge Transport in Organic Semiconductors. Jiang Y; Geng H; Shi W; Peng Q; Zheng X; Shuai Z J Phys Chem Lett; 2014 Jul; 5(13):2267-73. PubMed ID: 26279545 [TBL] [Abstract][Full Text] [Related]
3. Nuclear quantum tunnelling and carrier delocalization effects to bridge the gap between hopping and bandlike behaviors in organic semiconductors. Jiang Y; Zhong X; Shi W; Peng Q; Geng H; Zhao Y; Shuai Z Nanoscale Horiz; 2016 Jan; 1(1):53-59. PubMed ID: 32260602 [TBL] [Abstract][Full Text] [Related]
4. From charge transport parameters to charge mobility in organic semiconductors through multiscale simulation. Shuai Z; Geng H; Xu W; Liao Y; André JM Chem Soc Rev; 2014 Apr; 43(8):2662-79. PubMed ID: 24394992 [TBL] [Abstract][Full Text] [Related]
5. Charge transfer rates in organic semiconductors beyond first-order perturbation: from weak to strong coupling regimes. Nan G; Wang L; Yang X; Shuai Z; Zhao Y J Chem Phys; 2009 Jan; 130(2):024704. PubMed ID: 19154047 [TBL] [Abstract][Full Text] [Related]
6. Theoretical study on the charge transport in single crystals of TCNQ, F Ji LF; Fan JX; Zhang SF; Ren AM Phys Chem Chem Phys; 2018 Jan; 20(5):3784-3794. PubMed ID: 29349447 [TBL] [Abstract][Full Text] [Related]
7. Charge Transport in Organic Semiconductors: The Perspective from Nonadiabatic Molecular Dynamics. Giannini S; Blumberger J Acc Chem Res; 2022 Mar; 55(6):819-830. PubMed ID: 35196456 [TBL] [Abstract][Full Text] [Related]
8. Performance of Mixed Quantum-Classical Approaches on Modeling the Crossover from Hopping to Bandlike Charge Transport in Organic Semiconductors. Xie W; Holub D; Kubař T; Elstner M J Chem Theory Comput; 2020 Apr; 16(4):2071-2084. PubMed ID: 32176844 [TBL] [Abstract][Full Text] [Related]
9. Applying Marcus theory to describe the carrier transports in organic semiconductors: Limitations and beyond. Shuai Z; Li W; Ren J; Jiang Y; Geng H J Chem Phys; 2020 Aug; 153(8):080902. PubMed ID: 32872875 [TBL] [Abstract][Full Text] [Related]
10. Crossover from hopping to band-like transport in crystalline organic semiconductors: The effect of shallow traps. Dong J; Wu C J Chem Phys; 2019 Jan; 150(4):044903. PubMed ID: 30709264 [TBL] [Abstract][Full Text] [Related]
11. Negative isotope effect for charge transport in acenes and derivatives--a theoretical conclusion. Jiang Y; Peng Q; Geng H; Ma H; Shuai Z Phys Chem Chem Phys; 2015 Feb; 17(5):3273-80. PubMed ID: 25521587 [TBL] [Abstract][Full Text] [Related]
12. Electronic properties of disordered organic semiconductors via QM/MM simulations. Difley S; Wang LP; Yeganeh S; Yost SR; Van Voorhis T Acc Chem Res; 2010 Jul; 43(7):995-1004. PubMed ID: 20443554 [TBL] [Abstract][Full Text] [Related]
13. De Novo Calculation of the Charge Carrier Mobility in Amorphous Small Molecule Organic Semiconductors. Kaiser S; Neumann T; Symalla F; Schlöder T; Fediai A; Friederich P; Wenzel W Front Chem; 2021; 9():801589. PubMed ID: 35004618 [TBL] [Abstract][Full Text] [Related]
14. Theoretical comparative studies on transport properties of pentacene, pentathienoacene, and 6,13-dichloropentacene. Zhang X; Yang X; Geng H; Nan G; Sun X; Xi J; Xu X J Comput Chem; 2015 May; 36(12):891-900. PubMed ID: 25809856 [TBL] [Abstract][Full Text] [Related]
15. Charge transport in electrically doped amorphous organic semiconductors. Yoo SJ; Kim JJ Macromol Rapid Commun; 2015 Jun; 36(11):984-1000. PubMed ID: 25858625 [TBL] [Abstract][Full Text] [Related]
16. Dichotomy between the band and hopping transport in organic crystals: insights from experiments. Yavuz I Phys Chem Chem Phys; 2017 Oct; 19(38):25819-25828. PubMed ID: 28932847 [TBL] [Abstract][Full Text] [Related]
17. Multiscale study of charge mobility of organic semiconductor with dynamic disorders. Wang L; Li Q; Shuai Z; Chen L; Shi Q Phys Chem Chem Phys; 2010 Apr; 12(13):3309-14. PubMed ID: 20237724 [TBL] [Abstract][Full Text] [Related]
18. How to calculate charge mobility in molecular materials from surface hopping non-adiabatic molecular dynamics - beyond the hopping/band paradigm. Carof A; Giannini S; Blumberger J Phys Chem Chem Phys; 2019 Dec; 21(48):26368-26386. PubMed ID: 31793569 [TBL] [Abstract][Full Text] [Related]
19. Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions. Yan H; Bergren AJ; McCreery R; Della Rocca ML; Martin P; Lafarge P; Lacroix JC Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5326-30. PubMed ID: 23509271 [TBL] [Abstract][Full Text] [Related]
20. Role of intermolecular charge delocalization and its dimensionality in efficient band-like electron transport in crystalline 2,5-difluoro-7,7,8,8-tetracyanoquinodimethane (F Sosorev AY Phys Chem Chem Phys; 2017 Sep; 19(37):25478-25486. PubMed ID: 28900645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]