These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 30620786)
21. The role of natural purified humic acids in modifying mercury accessibility in water and soil. Cattani I; Zhang H; Beone GM; Del Re AA; Boccelli R; Trevisan M J Environ Qual; 2009; 38(2):493-501. PubMed ID: 19202019 [TBL] [Abstract][Full Text] [Related]
22. Evaluation of organic amendment on the effect of cadmium bioavailability in contaminated soils using the DGT technique and traditional methods. Yao Y; Sun Q; Wang C; Wang PF; Ding SM Environ Sci Pollut Res Int; 2017 Mar; 24(9):7959-7968. PubMed ID: 26282443 [TBL] [Abstract][Full Text] [Related]
23. Diffusive gradients in thin films (DGT) for the prediction of bioavailability of heavy metals in contaminated soils to earthworm (Eisenia foetida) and oral bioavailable concentrations. Bade R; Oh S; Shin WS Sci Total Environ; 2012 Feb; 416():127-36. PubMed ID: 22134028 [TBL] [Abstract][Full Text] [Related]
24. Development of a novel composite resin for dissolved divalent mercury measurement using diffusive gradients in thin films. Yao H; Zhao Y; Lin CJ; Yi F; Liang X; Feng X Chemosphere; 2020 Jul; 251():126231. PubMed ID: 32169713 [TBL] [Abstract][Full Text] [Related]
25. Assessing the uptake of selenium from naturally enriched soils by maize (Zea mays L.) using diffusive gradients in thin-films technique (DGT) and traditional extractions. Wang M; Cui Z; Xue M; Peng Q; Zhou F; Wang D; Dinh QT; Liu Y; Liang D Sci Total Environ; 2019 Nov; 689():1-9. PubMed ID: 31260894 [TBL] [Abstract][Full Text] [Related]
26. A Diffusive Gradient-in-Thin-Film Technique for Evaluation of the Bioavailability of Cd in Soil Contaminated with Cd and Pb. Wang P; Wang T; Yao Y; Wang C; Liu C; Yuan Y Int J Environ Res Public Health; 2016 Jun; 13(6):. PubMed ID: 27271644 [TBL] [Abstract][Full Text] [Related]
27. Field controlled experiments of mercury accumulation in crops from air and soil. Niu Z; Zhang X; Wang Z; Ci Z Environ Pollut; 2011 Oct; 159(10):2684-9. PubMed ID: 21723013 [TBL] [Abstract][Full Text] [Related]
28. Application of diffusive gradients in thin films and core centrifugation methods to determine inorganic mercury and monomethylmercury profiles in sediment porewater. Noh S; Hong YS; Han S Environ Toxicol Chem; 2016 Feb; 35(2):348-56. PubMed ID: 26250361 [TBL] [Abstract][Full Text] [Related]
29. Mercury speciation analyses in HgCl(2)-contaminated soils and groundwater--implications for risk assessment and remediation strategies. Bollen A; Wenke A; Biester H Water Res; 2008 Jan; 42(1-2):91-100. PubMed ID: 17675134 [TBL] [Abstract][Full Text] [Related]
30. Phytoscreening-based assessment of mercury in soil. Bigham G; Liang L; Balouet JC; Chalot M Environ Sci Pollut Res Int; 2015 Dec; 22(23):19285-91. PubMed ID: 26490933 [TBL] [Abstract][Full Text] [Related]
31. Mercury emission from industrially contaminated soils in relation to chemical, microbial, and meteorological factors. Osterwalder S; Huang JH; Shetaya WH; Agnan Y; Frossard A; Frey B; Alewell C; Kretzschmar R; Biester H; Obrist D Environ Pollut; 2019 Jul; 250():944-952. PubMed ID: 31085481 [TBL] [Abstract][Full Text] [Related]
32. Bioavailability and sequential extraction of mercury in soils and organisms of a mangrove contaminated by a chlor-alkali plant. Araújo PRM; Biondi CM; do Nascimento CWA; da Silva FBV; Alvarez AM Ecotoxicol Environ Saf; 2019 Nov; 183():109469. PubMed ID: 31376803 [TBL] [Abstract][Full Text] [Related]
33. Spatial distribution characteristics of mercury in the soils and native earthworms (Bimastos parvus) of the leachate-contaminated zone around a traditional landfill. He C; Arizono K; Ji H; Yakushiji Y; Zhang D; Huang K; Ishibashi Y Sci Total Environ; 2018 Sep; 636():1565-1576. PubMed ID: 29913617 [TBL] [Abstract][Full Text] [Related]
34. Assessment of arsenic availability in soils using the diffusive gradients in thin films (DGT) technique--a comparison study of DGT and classic extraction methods. Wang J; Bai L; Zeng X; Su S; Wang Y; Wu C Environ Sci Process Impacts; 2014; 16(10):2355-61. PubMed ID: 25112505 [TBL] [Abstract][Full Text] [Related]
35. Accumulation, transfer, and potential sources of mercury in the soil-wheat system under field conditions over the Loess Plateau, northwest China. Wang S; Nan Z; Prete D; Ma J; Liao Q; Zhang Q Sci Total Environ; 2016 Oct; 568():245-252. PubMed ID: 27300562 [TBL] [Abstract][Full Text] [Related]
36. Mercury speciation in various aquatic systems using passive sampling technique of diffusive gradients in thin-film. Bratkič A; Klun K; Gao Y Sci Total Environ; 2019 May; 663():297-306. PubMed ID: 30711596 [TBL] [Abstract][Full Text] [Related]
37. Comparison of diffusive gradients in thin film technique with traditional methods for evaluation of zinc bioavailability in soils. Sun Q; Chen J; Ding S; Yao Y; Chen Y Environ Monit Assess; 2014 Oct; 186(10):6553-64. PubMed ID: 24942518 [TBL] [Abstract][Full Text] [Related]
38. Assessing the uptake of arsenic and antimony from contaminated soil by radish (Raphanus sativus) using DGT and selective extractions. Ngo LK; Pinch BM; Bennett WW; Teasdale PR; Jolley DF Environ Pollut; 2016 Sep; 216():104-114. PubMed ID: 27239694 [TBL] [Abstract][Full Text] [Related]
39. Mercury fractionation, bioavailability, and ecotoxicity in highly contaminated soils from chlor-alkali plants. Zagury GJ; Neculita CM; Bastien C; Deschênes L Environ Toxicol Chem; 2006 Apr; 25(4):1138-47. PubMed ID: 16629154 [TBL] [Abstract][Full Text] [Related]
40. Impacts of mercury contaminated mining waste on soil quality, crops, bivalves, and fish in the Naboc River area, Mindanao, Philippines. Appleton JD; Weeks JM; Calvez JP; Beinhoff C Sci Total Environ; 2006 Feb; 354(2-3):198-211. PubMed ID: 16398996 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]