BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30620927)

  • 1. An EOG-based wheelchair robotic arm system for assisting patients with severe spinal cord injuries.
    Huang Q; Chen Y; Zhang Z; He S; Zhang R; Liu J; Zhang Y; Shao M; Li Y
    J Neural Eng; 2019 Apr; 16(2):026021. PubMed ID: 30620927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An EOG-Based Human-Machine Interface for Wheelchair Control.
    Huang Q; He S; Wang Q; Gu Z; Peng N; Li K; Zhang Y; Shao M; Li Y
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):2023-2032. PubMed ID: 28767359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An EOG-Based Human-Machine Interface to Control a Smart Home Environment for Patients With Severe Spinal Cord Injuries.
    Zhang R; He S; Yang X; Wang X; Li K; Huang Q; Yu Z; Zhang X; Tang D; Li Y
    IEEE Trans Biomed Eng; 2019 Jan; 66(1):89-100. PubMed ID: 29993413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wheelchair control for disabled patients using EMG/EOG based human machine interface: a review.
    Kaur A
    J Med Eng Technol; 2021 Jan; 45(1):61-74. PubMed ID: 33302770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. System for assisted mobility using eye movements based on electrooculography.
    Barea R; Boquete L; Mazo M; López E
    IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):209-18. PubMed ID: 12611358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.
    Ma J; Zhang Y; Cichocki A; Matsuno F
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):876-89. PubMed ID: 25398172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An EEG-/EOG-Based Hybrid Brain-Computer Interface: Application on Controlling an Integrated Wheelchair Robotic Arm System.
    Huang Q; Zhang Z; Yu T; He S; Li Y
    Front Neurosci; 2019; 13():1243. PubMed ID: 31824245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human-machine interfaces based on EMG and EEG applied to robotic systems.
    Ferreira A; Celeste WC; Cheein FA; Bastos-Filho TF; Sarcinelli-Filho M; Carelli R
    J Neuroeng Rehabil; 2008 Mar; 5():10. PubMed ID: 18366775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Single-Channel EOG-Based Speller.
    He S; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):1978-1987. PubMed ID: 28641264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HMM based automated wheelchair navigation using EOG traces in EEG.
    Aziz F; Arof H; Mokhtar N; Mubin M
    J Neural Eng; 2014 Oct; 11(5):056018. PubMed ID: 25188730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A P300-Based Threshold-Free Brain Switch and Its Application in Wheelchair Control.
    He S; Zhang R; Wang Q; Chen Y; Yang T; Feng Z; Zhang Y; Shao M; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):715-725. PubMed ID: 27416603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards a new modality-independent interface for a robotic wheelchair.
    Bastos-Filho TF; Cheein FA; Müller SM; Celeste WC; de la Cruz C; Cavalieri DC; Sarcinelli-Filho M; Amaral PF; Perez E; Soria CM; Carelli R
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):567-84. PubMed ID: 23744700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrooculogram wheelchair control.
    Philips GR; Catellier AA; Barrett SF; Wright CH
    Biomed Sci Instrum; 2007; 43():164-9. PubMed ID: 17487075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Human-Machine Interface Based on an EOG and a Gyroscope for Humanoid Robot Control and Its Application to Home Services.
    Wang F; Li X; Pan J
    J Healthc Eng; 2022; 2022():1650387. PubMed ID: 35345662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GOM-Face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control.
    Nam Y; Koo B; Cichocki A; Choi S
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):453-62. PubMed ID: 24021635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.
    Lopes AC; Nunes U; Vaz L; Vaz L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():471-4. PubMed ID: 21095885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards BCI-actuated smart wheelchair system.
    Tang J; Liu Y; Hu D; Zhou Z
    Biomed Eng Online; 2018 Aug; 17(1):111. PubMed ID: 30126416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid EEG-EOG brain-computer interface system for practical machine control.
    Punsawad Y; Wongsawat Y; Parnichkun M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1360-3. PubMed ID: 21096331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI.
    Chen X; Zhao B; Wang Y; Xu S; Gao X
    Int J Neural Syst; 2018 Oct; 28(8):1850018. PubMed ID: 29768990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling a human-computer interface system with a novel classification method that uses electrooculography signals.
    Wu SL; Liao LD; Lu SW; Jiang WL; Chen SA; Lin CT
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2133-41. PubMed ID: 23446030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.