These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 30620939)

  • 21. Characterization of a Water-Dispersed Biodegradable Polyurethane-Silk Composite Sponge Using
    Tanaka T; Ibe Y; Jono T; Tanaka R; Naito A; Asakura T
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361802
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering.
    Liu H; Li X; Zhou G; Fan H; Fan Y
    Biomaterials; 2011 May; 32(15):3784-93. PubMed ID: 21376391
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silk biomaterials for vascular tissue engineering applications.
    Gupta P; Mandal BB
    Acta Biomater; 2021 Oct; 134():79-106. PubMed ID: 34384912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Triple-Layer Vascular Grafts Fabricated by Combined E-Jet 3D Printing and Electrospinning.
    Huang R; Gao X; Wang J; Chen H; Tong C; Tan Y; Tan Z
    Ann Biomed Eng; 2018 Sep; 46(9):1254-1266. PubMed ID: 29845412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering.
    Shao W; He J; Sang F; Ding B; Chen L; Cui S; Li K; Han Q; Tan W
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():342-51. PubMed ID: 26478319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Small-diameter silk vascular grafts (3 mm diameter) with a double-raschel knitted silk tube coated with silk fibroin sponge.
    Aytemiz D; Sakiyama W; Suzuki Y; Nakaizumi N; Tanaka R; Ogawa Y; Takagi Y; Nakazawa Y; Asakura T
    Adv Healthc Mater; 2013 Feb; 2(2):361-8. PubMed ID: 23184438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of heparinized small diameter TPU/PCL bi-layered artificial blood vessels and in vivo assessment in a rabbit carotid artery replacement model.
    Fang Z; Xiao Y; Geng X; Jia L; Xing Y; Ye L; Gu Y; Zhang AY; Feng ZG
    Biomater Adv; 2022 Feb; 133():112628. PubMed ID: 35527159
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of a silk Fibroin/Polyurethane blend patch on rat Vessels.
    Shimada K; Higuchi A; Kubo R; Murakami T; Nakazawa Y; Tanaka R
    Organogenesis; 2017 Oct; 13(4):115-124. PubMed ID: 28933641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silk fibroin-coated three-dimensional polyurethane scaffolds for tissue engineering: interactions with normal human fibroblasts.
    Dal Prà I; Petrini P; Chiarini A; Bozzini S; Farè S; Armato U
    Tissue Eng; 2003 Dec; 9(6):1113-21. PubMed ID: 14670099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tubular TPU/SF nanofibers covered with chitosan-based hydrogels as small-diameter vascular grafts with enhanced mechanical properties.
    Maleki S; Shamloo A; Kalantarnia F
    Sci Rep; 2022 Apr; 12(1):6179. PubMed ID: 35418612
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI; Cahill PA; Stokes J; McGuinness GB
    J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of triple-layered vascular grafts composed of silk fibers, polyacrylamide hydrogel, and polyurethane nanofibers with biomimetic mechanical properties.
    Mi HY; Jiang Y; Jing X; Enriquez E; Li H; Li Q; Turng LS
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():241-249. PubMed ID: 30813024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a gelatin-based polyurethane vascular graft by spray, phase-inversion technology.
    Losi P; Mancuso L; Al Kayal T; Celi S; Briganti E; Gualerzi A; Volpi S; Cao G; Soldani G
    Biomed Mater; 2015 Aug; 10(4):045014. PubMed ID: 26238213
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Preparation and properties of novel human-like collagen-silk fibroin scaffold for blood vessel].
    Zhu C; Fan D; Ma X; Xue W; Hui J; Chen L; Duan Z; Ma P
    Sheng Wu Gong Cheng Xue Bao; 2009 Aug; 25(8):1225-33. PubMed ID: 19938461
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrospinning-aligned and random polydioxanone-polycaprolactone-silk fibroin-blended scaffolds: geometry for a vascular matrix.
    McClure MJ; Sell SA; Ayres CE; Simpson DG; Bowlin GL
    Biomed Mater; 2009 Oct; 4(5):055010. PubMed ID: 19815970
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo regeneration of elastic lamina on fibroin biodegradable vascular scaffold.
    Cattaneo I; Figliuzzi M; Azzollini N; Catto V; Farè S; Tanzi MC; Alessandrino A; Freddi G; Remuzzi A
    Int J Artif Organs; 2013 Mar; 36(3):166-74. PubMed ID: 23404641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HRP-mediated graft polymerization of acrylic acid onto silk fibroins and in situ biomimetic mineralization.
    Zhou B; Zhou Q; Wang P; Yuan J; Yu Y; Deng C; Wang Q; Fan X
    J Mater Sci Mater Med; 2018 May; 29(6):72. PubMed ID: 29796746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.
    Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H
    J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A combined method for bilayered vascular graft fabrication.
    Al Kayal T; Maniglio D; Bonani W; Losi P; Migliaresi C; Soldani G
    J Mater Sci Mater Med; 2015 Feb; 26(2):96. PubMed ID: 25652773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of the knitted silk vascular grafts coated with fibroin sponges prepared using glycerin, poly(ethylene glycol diglycidyl ether) and poly(ethylene glycol) as porogens.
    Tanaka T; Uemura A; Tanaka R; Tasei Y; Asakura T
    J Biomater Appl; 2018 Apr; 32(9):1239-1252. PubMed ID: 29448867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.