These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30620981)

  • 1. [Smart Rehab: App-based rehabilitation training for upper extremity amputees - Case Report].
    Prahm C; Sturma A; Kayali F; Mörth E; Aszmann O
    Handchir Mikrochir Plast Chir; 2018 Dec; 50(6):425-432. PubMed ID: 30620981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Game-Based Rehabilitation for Myoelectric Prosthesis Control.
    Prahm C; Vujaklija I; Kayali F; Purgathofer P; Aszmann OC
    JMIR Serious Games; 2017 Feb; 5(1):e3. PubMed ID: 28183689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PlayBionic: Game-Based Interventions to Encourage Patient Engagement and Performance in Prosthetic Motor Rehabilitation.
    Prahm C; Kayali F; Sturma A; Aszmann O
    PM R; 2018 Nov; 10(11):1252-1260. PubMed ID: 30503232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erratum.
    Mult Scler; 2016 Oct; 22(12):NP9-NP11. PubMed ID: 26041800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upbeat: Augmented Reality-Guided Dancing for Prosthetic Rehabilitation of Upper Limb Amputees.
    Melero M; Hou A; Cheng E; Tayade A; Lee SC; Unberath M; Navab N
    J Healthc Eng; 2019; 2019():2163705. PubMed ID: 31015903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mobile game-based virtual reality rehabilitation program for upper limb dysfunction after ischemic stroke.
    Choi YH; Ku J; Lim H; Kim YH; Paik NJ
    Restor Neurol Neurosci; 2016 May; 34(3):455-63. PubMed ID: 27163250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Video Game-Based Rehabilitation Approach for Individuals Who Have Undergone Upper Limb Amputation: Case-Control Study.
    Hashim NA; Abd Razak NA; Gholizadeh H; Abu Osman NA
    JMIR Serious Games; 2021 Feb; 9(1):e17017. PubMed ID: 33538698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobile, Game-Based Training for Myoelectric Prosthesis Control.
    Winslow BD; Ruble M; Huber Z
    Front Bioeng Biotechnol; 2018; 6():94. PubMed ID: 30050900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traumatic quadruple amputee rehabilitation: from amputation to prosthetic functionality: a case report.
    Monné Cuevas P; Borrás Correa A; Vidal Fortuny E; Ángeles Diaz Vela M; Calvo Sanz J
    Disabil Rehabil Assist Technol; 2021 Jan; 16(1):112-118. PubMed ID: 31373523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. User training for machine learning controlled upper limb prostheses: a serious game approach.
    Kristoffersen MB; Franzke AW; Bongers RM; Wand M; Murgia A; van der Sluis CK
    J Neuroeng Rehabil; 2021 Feb; 18(1):32. PubMed ID: 33579326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer.
    van Dijk L; van der Sluis CK; van Dijk HW; Bongers RM
    PLoS One; 2016; 11(8):e0160817. PubMed ID: 27556154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review.
    Carey SL; Lura DJ; Highsmith MJ; ;
    J Rehabil Res Dev; 2015; 52(3):247-62. PubMed ID: 26230500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control.
    Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N
    J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfer of mode switching performance: from training to upper-limb prosthesis use.
    Heerschop A; van der Sluis CK; Bongers RM
    J Neuroeng Rehabil; 2021 May; 18(1):85. PubMed ID: 34022945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromyography-Driven Exergaming in Wheelchairs on a Mobile Platform: Bench and Pilot Testing of the WOW-Mobile Fitness System.
    Enciso J; Variya D; Sunthonlap J; Sarmiento T; Lee KM; Velasco J; Pebdani RN; de Leon RD; Dy C; Keslacy S; Won DS
    JMIR Rehabil Assist Technol; 2021 Jan; 8(1):e16054. PubMed ID: 33464221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis.
    Dosen S; Markovic M; Somer K; Graimann B; Farina D
    J Neuroeng Rehabil; 2015 Jun; 12():55. PubMed ID: 26088323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upper limb muscle activation during sports video gaming of persons with spinal cord injury.
    Jaramillo JP; Johanson ME; Kiratli BJ
    J Spinal Cord Med; 2019 Jan; 42(1):77-85. PubMed ID: 29616887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Football APP based on smart phone with FES in drop foot rehabilitation.
    Ciou SH; Hwang YS; Chen CC; Luh JJ; Chen SC; Chen YL
    Technol Health Care; 2017; 25(3):541-555. PubMed ID: 28211830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of environment: Experiences of users of myoelectric arm prosthesis-a qualitative study.
    Widehammar C; Pettersson I; Janeslätt G; Hermansson L
    Prosthet Orthot Int; 2018 Feb; 42(1):28-36. PubMed ID: 28470129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted muscle reinnervation to improve electromyography signals for advanced myoelectric prosthetic limbs: a series of seven patients.
    Myers H; Lu D; Gray SJ; Bruscino-Raiola F
    ANZ J Surg; 2020 Apr; 90(4):591-596. PubMed ID: 31989741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.