These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 30620981)
21. Task-Oriented Gaming for Transfer to Prosthesis Use. van Dijk L; van der Sluis CK; van Dijk HW; Bongers RM IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1384-1394. PubMed ID: 26625419 [TBL] [Abstract][Full Text] [Related]
22. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control. Huang S; Wensman JP; Ferris DP IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851 [TBL] [Abstract][Full Text] [Related]
23. Mobile Game-based Virtual Reality Program for Upper Extremity Stroke Rehabilitation. Choi YH; Paik NJ J Vis Exp; 2018 Mar; (133):. PubMed ID: 29578520 [TBL] [Abstract][Full Text] [Related]
24. Psycho-physiological training approach for amputee rehabilitation. Dhal C; Wahi A Biomed Instrum Technol; 2015; 49(2):138-43. PubMed ID: 25793347 [TBL] [Abstract][Full Text] [Related]
25. Competitive and cooperative arm rehabilitation games played by a patient and unimpaired person: effects on motivation and exercise intensity. Goršič M; Cikajlo I; Novak D J Neuroeng Rehabil; 2017 Mar; 14(1):23. PubMed ID: 28330504 [TBL] [Abstract][Full Text] [Related]
26. Computer game-based upper extremity training in the home environment in stroke persons: a single subject design. Slijper A; Svensson KE; Backlund P; Engström H; Sunnerhagen KS J Neuroeng Rehabil; 2014 Mar; 11():35. PubMed ID: 24625289 [TBL] [Abstract][Full Text] [Related]
27. Functional comparison of upper extremity amputees using myoelectric and conventional prostheses. Stein RB; Walley M Arch Phys Med Rehabil; 1983 Jun; 64(6):243-8. PubMed ID: 6860093 [TBL] [Abstract][Full Text] [Related]
28. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Feedforward Ballistic Contractions and Implications for Direct Neural Control of Powered Lower Limb Prostheses. Huang S; Huang H IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):894-903. PubMed ID: 29641394 [TBL] [Abstract][Full Text] [Related]
29. The effect of calibration parameters on the control of a myoelectric hand prosthesis using EMG feedback. Tchimino J; Markovic M; Dideriksen JL; Dosen S J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34082406 [No Abstract] [Full Text] [Related]
30. Applying Health Utility Outcome Measures and Quality-Adjusted Life-Years to Compare Hand Allotransplantation and Myoelectric Prostheses for Upper Extremity Amputations. Efanov JI; Izadpanah A; Bou-Merhi J; Lin SJ; Danino MA Plast Reconstr Surg; 2022 Mar; 149(3):465e-474e. PubMed ID: 35196684 [TBL] [Abstract][Full Text] [Related]
31. Intuitive real-time control strategy for high-density myoelectric hand prosthesis using deep and transfer learning. Tam S; Boukadoum M; Campeau-Lecours A; Gosselin B Sci Rep; 2021 May; 11(1):11275. PubMed ID: 34050220 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of a Game Based Tele Rehabilitation Platform for In-Home Therapy of Hand-Arm Function Post Stroke: Feasibility Study. Szturm T; Imran Z; Pooyania S; Kanitkar A; Mahana B PM R; 2021 Jan; 13(1):45-54. PubMed ID: 32107868 [TBL] [Abstract][Full Text] [Related]
33. [Selective nerve transfers to improve the control of myoelectrical arm prostheses]. Aszmann OC; Dietl H; Frey M Handchir Mikrochir Plast Chir; 2008 Feb; 40(1):60-5. PubMed ID: 18322900 [TBL] [Abstract][Full Text] [Related]
34. Design and evaluation of a mobile serious game application to supplement instruction. Devraj R; Colyott L; Cain J Curr Pharm Teach Learn; 2021 Sep; 13(9):1228-1235. PubMed ID: 34330403 [TBL] [Abstract][Full Text] [Related]
35. First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. Pasquina PF; Evangelista M; Carvalho AJ; Lockhart J; Griffin S; Nanos G; McKay P; Hansen M; Ipsen D; Vandersea J; Butkus J; Miller M; Murphy I; Hankin D J Neurosci Methods; 2015 Apr; 244():85-93. PubMed ID: 25102286 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of a Novel Step Training Mobile App Intervention in Cardiopulmonary Rehabilitation: A Single-Arm Prospective Cohort Study. Amiss E; Cottrell M Games Health J; 2022 Oct; 11(5):330-336. PubMed ID: 36067152 [No Abstract] [Full Text] [Related]
38. Utilizing Electromyographic Video Games Controllers to Improve Outcomes for Prosthesis Users. McLinden S; Smith P; Dombrowski M; MacDonald C; Lynn D; Tran K; Robinson K; Courbin D; Sparkman J; Manero A Appl Psychophysiol Biofeedback; 2024 Mar; 49(1):63-69. PubMed ID: 37526785 [TBL] [Abstract][Full Text] [Related]
39. Increasing Voluntary Myoelectric Training Time Through Game Design. Garske C; Dyson M; Dupan S; Morgan G; Nazarpour K IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2549-2556. PubMed ID: 36054389 [TBL] [Abstract][Full Text] [Related]
40. Benefits of the Cybathlon 2020 experience for a prosthetic hand user: a case study on the Hannes system. Caserta G; Boccardo N; Freddolini M; Barresi G; Marinelli A; Canepa M; Stedman S; Lombardi L; Laffranchi M; Gruppioni E; De Michieli L J Neuroeng Rehabil; 2022 Jul; 19(1):68. PubMed ID: 35787721 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]