These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30621058)

  • 1. The Fabrication of Nanostructures on Polydimethylsiloxane by Laser Interference Lithography.
    Wu J; Geng Z; Xie Y; Fan Z; Su Y; Xu C; Chen H
    Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30621058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography.
    Du K; Wathuthanthri I; Mao W; Xu W; Choi CH
    Nanotechnology; 2011 Jul; 22(28):285306. PubMed ID: 21642762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Periodic Plasmonic Structures Using Interference Lithography and Chalcogenide Photoresist.
    Dan'ko V; Dmitruk M; Indutnyi I; Mamykin S; Myn'ko V; Lukaniuk M; Shepeliavyi P; Lytvyn P
    Nanoscale Res Lett; 2015 Dec; 10(1):497. PubMed ID: 26714859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large area periodic, systematically changing, multishape nanostructures by laser interference lithography and cell response to these topographies.
    Ertorer E; Vasefi F; Keshwah J; Najiminaini M; Halfpap C; Langbein U; Carson JJ; Hamilton DW; Mittler S
    J Biomed Opt; 2013 Mar; 18(3):035002. PubMed ID: 23460125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indium⁻Tin⁻Oxide Nanostructures for Plasmon-Enhanced Infrared Spectroscopy: A Numerical Study.
    Li Z; Zhang Z; Chen K
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 30979000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible method based on four-beam interference lithography for fabrication of large areas of perfectly periodic plasmonic arrays.
    Vala M; Homola J
    Opt Express; 2014 Jul; 22(15):18778-89. PubMed ID: 25089495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring SERS from complex patterns fabricated by multi-exposure laser interference lithography.
    Kim SJ; Hwang JS; Park JE; Yang M; Kim S
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33892481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soft holographic interference lithography microlens for enhanced organic light emitting diode light extraction.
    Park JM; Gan Z; Leung WY; Liu R; Ye Z; Constant K; Shinar J; Shinar R; Ho KM
    Opt Express; 2011 Jul; 19 Suppl 4():A786-92. PubMed ID: 21747547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser Interference Lithography-A Method for the Fabrication of Controlled Periodic Structures.
    Liu R; Cao L; Liu D; Wang L; Saeed S; Wang Z
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale fabrication of free-standing and sub-μm PDMS through-hole membranes.
    Le-The H; Tibbe M; Loessberg-Zahl J; Palma do Carmo M; van der Helm M; Bomer J; van den Berg A; Leferink A; Segerink L; Eijkel J
    Nanoscale; 2018 Apr; 10(16):7711-7718. PubMed ID: 29658030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving grating duty cycle uniformity: amplitude-splitting flat-top beam laser interference lithography.
    Xue D; Deng X; Dun X; Wang J; Wang Z; Cheng X
    Appl Opt; 2024 Mar; 63(8):2065-2069. PubMed ID: 38568648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of multiple theories for the simulation of laser interference lithography processes.
    Lin TH; Yang YK; Fu CC
    Nanotechnology; 2017 Nov; 28(47):475301. PubMed ID: 28936985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple-Patterning Nanosphere Lithography for Fabricating Periodic Three-Dimensional Hierarchical Nanostructures.
    Xu X; Yang Q; Wattanatorn N; Zhao C; Chiang N; Jonas SJ; Weiss PS
    ACS Nano; 2017 Oct; 11(10):10384-10391. PubMed ID: 28956898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of high-resolution large-area patterns using EUV interference lithography in a scan-exposure mode.
    Wang L; Solak HH; Ekinci Y
    Nanotechnology; 2012 Aug; 23(30):305303. PubMed ID: 22781087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fabrication of periodic metal nanodot arrays through pulsed laser melting induced fragmentation of metal nanogratings.
    Xia Q; Chou SY
    Nanotechnology; 2009 Jul; 20(28):285310. PubMed ID: 19546488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of complex patterns with a wide range of feature sizes from a single line prepattern by successive application of capillary force lithography.
    Lee SK; Jung JM; Lee JS; Jung HT
    Langmuir; 2010 Sep; 26(17):14359-63. PubMed ID: 20806967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode.
    Chen X; Yang F; Zhang C; Zhou J; Guo LJ
    ACS Nano; 2016 Apr; 10(4):4039-45. PubMed ID: 27075440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Aligned Plasmonic Lithography for Maskless Fabrication of Large-Area Long-Range Ordered 2D Nanostructures.
    Huang J; Xu K; Hu J; Yuan D; Li J; Qiao J; Xu S
    Nano Lett; 2022 Aug; 22(15):6223-6228. PubMed ID: 35849492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation on fabrication of nanoscale patterns using laser interference lithography.
    Choi J; Chung MH; Dong KY; Park EM; Ham DJ; Park Y; Song IS; Pak JJ; Ju BK
    J Nanosci Nanotechnol; 2011 Jan; 11(1):778-81. PubMed ID: 21446544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct patterning of periodic semiconductor nanostructures using single-pulse nanosecond laser interference.
    Wang YR; Olaizola SM; Han IS; Jin CY; Hopkinson M
    Opt Express; 2020 Oct; 28(22):32529-32539. PubMed ID: 33114936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.