These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30621067)

  • 1. Heat Transport of Electrokinetic Flow in Slit Soft Nanochannels.
    Wang Z; Jian Y
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30621067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal transport characteristics of combined electroosmotic and pressure driven flow in soft nanofluidics.
    Matin MH; Ohshima H
    J Colloid Interface Sci; 2016 Aug; 476():167-176. PubMed ID: 27214147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters.
    Chanda S; Sinha S; Das S
    Soft Matter; 2014 Oct; 10(38):7558-68. PubMed ID: 25112236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrokinetic energy conversion efficiency of viscoelastic fluids in a polyelectrolyte-grafted nanochannel.
    Jian Y; Li F; Liu Y; Chang L; Liu Q; Yang L
    Colloids Surf B Biointerfaces; 2017 Aug; 156():405-413. PubMed ID: 28551575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Energy Generation and Flow Enhancement (
    Sachar HS; Pial TH; Sivasankar VS; Das S
    ACS Nano; 2021 Nov; 15(11):17337-17347. PubMed ID: 34605243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined electroosmotically and pressure driven flow in soft nanofluidics.
    Matin MH; Ohshima H
    J Colloid Interface Sci; 2015 Dec; 460():361-9. PubMed ID: 26385594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass transfer of a neutral solute in polyelectrolyte grafted soft nanochannel with porous wall.
    Roy D; Bhattacharjee S; De S
    Electrophoresis; 2020 Apr; 41(7-8):578-587. PubMed ID: 31743466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covering the conical nanochannels with dense polyelectrolyte layers significantly improves the ionic current rectification.
    Khatibi M; Ashrafizadeh SN; Sadeghi A
    Anal Chim Acta; 2020 Jul; 1122():48-60. PubMed ID: 32503743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrokinetic energy conversion in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory.
    Sachar HS; Sivasankar VS; Das S
    Soft Matter; 2019 Jul; 15(29):5973-5986. PubMed ID: 31290913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Space Electroosmotic Thrusters in Ion Partitioning Soft Nanochannels.
    Zheng J; Jian Y
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34209246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternating current electroosmotic flow in polyelectrolyte-grafted nanochannel.
    Li F; Jian Y; Chang L; Zhao G; Yang L
    Colloids Surf B Biointerfaces; 2016 Nov; 147():234-241. PubMed ID: 27518455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic-size dependent electroosmotic flow in ion-selective biomimetic nanochannels.
    Seifollahi Z; Ashrafizadeh SN
    Colloids Surf B Biointerfaces; 2022 Aug; 216():112545. PubMed ID: 35561637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ion size, ion valence and pH of electrolyte solutions on EOF velocity in single nanochannels.
    Li J; Peng R; Li D
    Anal Chim Acta; 2019 Jun; 1059():68-79. PubMed ID: 30876634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrokinetic power generation in conical nanochannels: regulation effects due to conicity.
    Qian F; Zhang W; Huang D; Li W; Wang Q; Zhao C
    Phys Chem Chem Phys; 2020 Jan; 22(4):2386-2398. PubMed ID: 31938800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrokinetic transport properties of deoxynucleotide monophosphates (dNMPs) through thermoplastic nanochannels.
    O'Neil C; Amarasekara CA; Weerakoon-Ratnayake KM; Gross B; Jia Z; Singh V; Park S; Soper SA
    Anal Chim Acta; 2018 Oct; 1027():67-75. PubMed ID: 29866271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusioosmotic flows in slit nanochannels.
    Qian S; Das B; Luo X
    J Colloid Interface Sci; 2007 Nov; 315(2):721-30. PubMed ID: 17719599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid theoretical method for predicting electrokinetic energy conversion in nanochannels.
    Hu X; Nan Y; Kong X; Lu D; Wu J
    Phys Chem Chem Phys; 2020 Apr; 22(16):9110-9116. PubMed ID: 32301460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical Analysis of Heat Transfer and Entropy Generation in a Tube Filled with Double-Layer Porous Media.
    Yang K; Huang W; Li X; Wang J
    Entropy (Basel); 2020 Oct; 22(11):. PubMed ID: 33286982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of hydrodynamics and rheology of the ion partitioning effect on electrokinetic flow through a soft annulus with a retentive and absorptive wall.
    Koner P; Bera S; Ohshima H
    Soft Matter; 2023 Feb; 19(5):983-998. PubMed ID: 36637071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Streaming potential and electroviscous effects in soft nanochannels beyond Debye-Hückel linearization.
    Chen G; Das S
    J Colloid Interface Sci; 2015 May; 445():357-363. PubMed ID: 25643963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.