BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

881 related articles for article (PubMed ID: 30621069)

  • 1. The Role of Lipids in Parkinson's Disease.
    Xicoy H; Wieringa B; Martens GJM
    Cells; 2019 Jan; 8(1):. PubMed ID: 30621069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current perspective of mitochondrial biology in Parkinson's disease.
    Ammal Kaidery N; Thomas B
    Neurochem Int; 2018 Jul; 117():91-113. PubMed ID: 29550604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Performance Liquid Chromatography-Mass Spectrometry (LC-MS) Based Quantitative Lipidomics Study of Ganglioside-NANA-3 Plasma to Establish Its Association with Parkinson's Disease Patients.
    Zhang J; Zhang X; Wang L; Yang C
    Med Sci Monit; 2017 Nov; 23():5345-5353. PubMed ID: 29123078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Ceramides and Sphingolipids in Parkinson's Disease.
    Vos M; Klein C; Hicks AA
    J Mol Biol; 2023 Jun; 435(12):168000. PubMed ID: 36764358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potential role of glucose metabolism, lipid metabolism, and amino acid metabolism in the treatment of Parkinson's disease.
    Li H; Zeng F; Huang C; Pu Q; Thomas ER; Chen Y; Li X
    CNS Neurosci Ther; 2024 Feb; 30(2):e14411. PubMed ID: 37577934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse.
    Perfeito R; Cunha-Oliveira T; Rego AC
    Free Radic Biol Med; 2013 Sep; 62():186-201. PubMed ID: 23743292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson's disease.
    Gordon R; Singh N; Lawana V; Ghosh A; Harischandra DS; Jin H; Hogan C; Sarkar S; Rokad D; Panicker N; Anantharam V; Kanthasamy AG; Kanthasamy A
    Neurobiol Dis; 2016 Sep; 93():96-114. PubMed ID: 27151770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive lipids and their metabolism: New therapeutic opportunities for Parkinson's disease.
    Shen W; Jiang L; Zhao J; Wang H; Hu M; Chen L; Chen Y
    Eur J Neurosci; 2022 Feb; 55(3):846-872. PubMed ID: 34904314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dysregulated Lipid Metabolism and Its Role in α-Synucleinopathy in Parkinson's Disease.
    Alecu I; Bennett SAL
    Front Neurosci; 2019; 13():328. PubMed ID: 31031582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of β-Glucocerebrosidase Reduces Pathological α-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons.
    Mazzulli JR; Zunke F; Tsunemi T; Toker NJ; Jeon S; Burbulla LF; Patnaik S; Sidransky E; Marugan JJ; Sue CM; Krainc D
    J Neurosci; 2016 Jul; 36(29):7693-706. PubMed ID: 27445146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated GM3 plasma concentration in idiopathic Parkinson's disease: A lipidomic analysis.
    Chan RB; Perotte AJ; Zhou B; Liong C; Shorr EJ; Marder KS; Kang UJ; Waters CH; Levy OA; Xu Y; Shim HB; Pe'er I; Di Paolo G; Alcalay RN
    PLoS One; 2017; 12(2):e0172348. PubMed ID: 28212433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Damage to dopaminergic neurons by oxidative stress in Parkinson's disease (Review).
    Guo JD; Zhao X; Li Y; Li GR; Liu XL
    Int J Mol Med; 2018 Apr; 41(4):1817-1825. PubMed ID: 29393357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of nuclear REST/NRSF in aged-dopaminergic neurons in Parkinson's disease patients.
    Kawamura M; Sato S; Matsumoto G; Fukuda T; Shiba-Fukushima K; Noda S; Takanashi M; Mori N; Hattori N
    Neurosci Lett; 2019 Apr; 699():59-63. PubMed ID: 30684677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How can rAAV-α-synuclein and the fibril α-synuclein models advance our understanding of Parkinson's disease?
    Volpicelli-Daley LA; Kirik D; Stoyka LE; Standaert DG; Harms AS
    J Neurochem; 2016 Oct; 139 Suppl 1(Suppl 1):131-155. PubMed ID: 27018978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson's disease.
    Calì T; Ottolini D; Brini M
    Biofactors; 2011; 37(3):228-40. PubMed ID: 21674642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitin-proteasome system and Parkinson's diseases.
    Betarbet R; Sherer TB; Greenamyre JT
    Exp Neurol; 2005 Feb; 191 Suppl 1():S17-27. PubMed ID: 15629758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants of dopaminergic neuron loss in Parkinson's disease.
    Surmeier DJ
    FEBS J; 2018 Oct; 285(19):3657-3668. PubMed ID: 30028088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathological role of lipid interaction with α-synuclein in Parkinson's disease.
    Suzuki M; Sango K; Wada K; Nagai Y
    Neurochem Int; 2018 Oct; 119():97-106. PubMed ID: 29305919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathogenesis of Parkinson's disease.
    Sherer TB; Betarbet R; Greenamyre JT
    Curr Opin Investig Drugs; 2001 May; 2(5):657-62. PubMed ID: 11569943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysosomal response in relation to α-synuclein pathology differs between Parkinson's disease and multiple system atrophy.
    Puska G; Lutz MI; Molnar K; Regelsberger G; Ricken G; Pirker W; Laszlo L; Kovacs GG
    Neurobiol Dis; 2018 Jun; 114():140-152. PubMed ID: 29505813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.