These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 30621085)

  • 1. Self-Propagating Synthesis and Characterization Studies of Gd-Bearing Hf-Zirconolite Ceramic Waste Forms.
    Zhang K; Yin D; Xu K; Zhang H
    Materials (Basel); 2019 Jan; 12(1):. PubMed ID: 30621085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of pyrochlore-based U-bearing ceramic nuclear waste: uranium leaching test and TEM observation.
    Xu H; Wang Y; Zhao P; Bourcier WL; Van Konynenburg R; Shaw HF
    Environ Sci Technol; 2004 Mar; 38(5):1480-6. PubMed ID: 15046350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of the Partitioning Ratio of Minor Actinide Surrogates between Zirconolite and Glass in Glass-Ceramic for Nuclear Waste Disposal.
    Liao CZ; Liu C; Su M; Shih K
    Inorg Chem; 2017 Aug; 56(16):9913-9921. PubMed ID: 28782955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Borosilicate Glass-Ceramics Containing Zirconolite and Powellite for RE- and Mo-Rich Nuclear Waste Immobilization.
    Wan W; Zhu Y; Zhang X; Yang D; Huo Y; Xu C; Yu H; Zhao J; Huo J; Meng B
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal Structures of Al-Nd Codoped Zirconolite Derived from Glass Matrix and Powder Sintering.
    Liao CZ; Shih K; Lee WE
    Inorg Chem; 2015 Aug; 54(15):7353-61. PubMed ID: 26204432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Immobilization of Simulated Radioactive Soil Waste Using Self-Propagating Synthesized Gd₂Ti₂O₇ Pyrochlore Matrix.
    Xue J; Zhang K; He Z; Zhao W; Li W; Xie D; Luo B; Xu K; Zhang H
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30974761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase Evolution in the CaZrTi
    Blackburn LR; Townsend LT; Lawson SM; Mason AR; Stennett MC; Sun SK; Gardner LJ; Maddrell ER; Corkhill CL; Hyatt NC
    Inorg Chem; 2022 Apr; 61(15):5744-5756. PubMed ID: 35377149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of multiphase ceramic designer waste forms.
    Clark BM; Tumurugoti P; Sundaram SK; Amoroso JW; Marra JC
    Sci Rep; 2021 Feb; 11(1):4512. PubMed ID: 33633236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Nano-Polycrystalline Synroc-B Powders as a High Level Radioactive Wastes Ceramic Forms by a Solution Combustion Synthesis.
    Han YM; Lee SJ; Kim YK; Jung CH
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1672-5. PubMed ID: 27433644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zirconolite Polytypes and Murataite Polysomes in Matrices for the REE-Actinide Fraction of HLW.
    Yudintsev SV; Nickolsky MS; Ojovan MI; Stefanovsky OI; Nikonov BS; Ulanova AS
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high throughput computational investigation of the solid solution mechanisms of actinides and lanthanides in zirconolite.
    Dimosthenous S; Handley CM; Blackburn LR; Freeman CL; Hyatt NC
    RSC Adv; 2021 Jul; 11(41):25179-25186. PubMed ID: 35478893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymorphic Transitions in Cerium-Substituted Zirconolite (CaZrTi
    Clark BM; Sundaram SK; Misture ST
    Sci Rep; 2017 Jul; 7(1):5920. PubMed ID: 28724965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics of Ce and Pu incorporation into zirconolite waste-forms.
    Gilbert M; Harding JH
    Phys Chem Chem Phys; 2011 Jul; 13(28):13021-5. PubMed ID: 21691670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural transformations and disordering in zirconolite (CaZrTi2O7) at high pressure.
    Salamat A; McMillan PF; Firth S; Woodhead K; Hector AL; Garbarino G; Stennett MC; Hyatt NC
    Inorg Chem; 2013 Feb; 52(3):1550-8. PubMed ID: 23339518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A further investigation of the complex M3 murataite structure using Hf substitution and STEM-EELS techniques.
    Maki RSS; Morgan PED
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2019 Jun; 75(Pt 3):442-448. PubMed ID: 32830666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-entropy A
    Zhou L; Li F; Liu JX; Sun SK; Liang Y; Zhang GJ
    J Hazard Mater; 2021 Aug; 415():125596. PubMed ID: 33725552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization.
    Orlova AI; Ojovan MI
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31430956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy-ion irradiation effects on U
    Lu X; Shu X; Chen S; Zhang K; Chi F; Zhang H; Shao D; Mao X
    J Hazard Mater; 2018 Sep; 357():424-430. PubMed ID: 29929095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radionuclide disposal using the pyrochlore supergroup of minerals as a host matrix-A review.
    McMaster SA; Ram R; Faris N; Pownceby MI
    J Hazard Mater; 2018 Oct; 360():257-269. PubMed ID: 30121356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaching behavior and characteristics of glass components and surrogate nuclides in radioactive vitrified waste forms.
    Seo YC; Lee SH; Lee KS; Kim IT; Kim JH
    Environ Technol; 2001 Dec; 22(12):1395-404. PubMed ID: 11873875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.