These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30621203)

  • 1. Optimization of the Energy Consumption of Depth Tracking Control Based on Model Predictive Control for Autonomous Underwater Vehicles.
    Yao F; Yang C; Zhang M; Wang Y
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Evaluation on Depth Control Using Improved Model Predictive Control for Autonomous Underwater Vehicle (AUVs).
    Yao F; Yang C; Liu X; Zhang M
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30018268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and Trajectory Tracking Model Predictive Control Novel Method of AUV Based on CFD Data.
    Bao H; Zhu H
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast Trajectory Tracking Control Algorithm for Autonomous Vehicles Based on the Alternating Direction Multiplier Method (ADMM) to the Receding Optimization of Model Predictive Control (MPC).
    Dong D; Ye H; Luo W; Wen J; Huang D
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trajectory Planning of Autonomous Underwater Vehicles Based on Gauss Pseudospectral Method.
    Gan W; Su L; Chu Z
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustering Cloud-Like Model-Based Targets Underwater Tracking for AUVs.
    Sheng M; Tang S; Qin H; Wan L
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30658478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EMPC with adaptive APF of obstacle avoidance and trajectory tracking for autonomous electric vehicles.
    Yang H; Wang Z; Xia Y; Zuo Z
    ISA Trans; 2023 Apr; 135():438-448. PubMed ID: 36154777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust Formation Control for Multiple Underwater Vehicles.
    Bechlioulis CP; Giagkas F; Karras GC; Kyriakopoulos KJ
    Front Robot AI; 2019; 6():90. PubMed ID: 33501105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A PSO-enhanced Gauss pseudospectral method to solve trajectory planning for autonomous underwater vehicles.
    Gan W; Su L; Chu Z
    Math Biosci Eng; 2023 May; 20(7):11713-11731. PubMed ID: 37501417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Trajectory Tracking Algorithm for Autonomous Vehicles Based on Model Predictive Control.
    Huang Z; Li H; Li W; Liu J; Huang C; Yang Z; Fang W
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reachable set estimation for Takagi-Sugeno fuzzy systems against unknown output delays with application to tracking control of AUVs.
    Zhong Z; Zhu Y; Ahn CK
    ISA Trans; 2018 Jul; 78():31-38. PubMed ID: 29571583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lagrangian coherent structure assisted path planning for transoceanic autonomous underwater vehicle missions.
    Ramos AG; García-Garrido VJ; Mancho AM; Wiggins S; Coca J; Glenn S; Schofield O; Kohut J; Aragon D; Kerfoot J; Haskins T; Miles T; Haldeman C; Strandskov N; Allsup B; Jones C; Shapiro J
    Sci Rep; 2018 Mar; 8(1):4575. PubMed ID: 29545527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint Formation Control with Obstacle Avoidance of Towfish and Multiple Autonomous Underwater Vehicles Based on Graph Theory and the Null-Space-Based Method.
    Pang SK; Li YH; Yi H
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31174385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive model-parameter-free fault-tolerant trajectory tracking control for autonomous underwater vehicles.
    Zhu C; Huang B; Zhou B; Su Y; Zhang E
    ISA Trans; 2021 Aug; 114():57-71. PubMed ID: 33446340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Low-Cost Electromagnetic Docking Guidance System for Micro Autonomous Underwater Vehicles.
    Peng S; Liu J; Wu J; Li C; Liu B; Cai W; Yu H
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30736464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Tube Model Predictive Control Method for Autonomous Lateral Vehicle Control Based on Sliding Mode Control.
    Dai Y; Wang D
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal Sensor Formation for 3D Cooperative Localization of AUVs Using Time Difference of Arrival (TDOA) Method.
    Bo X; Razzaqi AA; Wang X
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30558311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Close-Range Tracking of Underwater Vehicles Using Light Beacons.
    Bosch J; Gracias N; Ridao P; Istenič K; Ribas D
    Sensors (Basel); 2016 Mar; 16(4):429. PubMed ID: 27023547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement Learning-Based Multi-AUV Adaptive Trajectory Planning for Under-Ice Field Estimation.
    Wang C; Wei L; Wang Z; Song M; Mahmoudian N
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30424017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative path planning of multiple autonomous underwater vehicles operating in dynamic ocean environment.
    Zhuang Y; Huang H; Sharma S; Xu D; Zhang Q
    ISA Trans; 2019 Nov; 94():174-186. PubMed ID: 31047643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.