These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 30621301)

  • 1. Sensitivity Enhancement of a Surface Plasmon Resonance with Tin Selenide (SnSe) Allotropes.
    Dai X; Liang Y; Zhao Y; Gan S; Jia Y; Xiang Y
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity Enhancement of a Surface Plasmon Resonance Sensor with Platinum Diselenide.
    Jia Y; Li Z; Wang H; Saeed M; Cai H
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning and Sensitivity Improvement of Bi-Metallic Structure-Based Surface Plasmon Resonance Biosensor with 2-D
    Sathya N; Karki B; Rane KP; Jha A; Pal A
    Plasmonics; 2022; 17(3):1001-1008. PubMed ID: 35069047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity Improvement of a Surface Plasmon Resonance Sensor Based on Two-Dimensional Materials Hybrid Structure in Visible Region: A Theoretical Study.
    Lin Z; Chen S; Lin C
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32344827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance Enhancement of SPR Biosensor Using Graphene-MoS
    Cai H; Wang M; Wu Z; Liu J; Wang X
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Sensitivity Goos-Hänchen Shifts Sensor Based on BlueP-TMDCs-Graphene Heterostructure.
    Han L; Hu Z; Pan J; Huang T; Luo D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32604852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors.
    Zhang C; Yin H; Han M; Dai Z; Pang H; Zheng Y; Lan YQ; Bao J; Zhu J
    ACS Nano; 2014 Apr; 8(4):3761-70. PubMed ID: 24601530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic Sensing Performance in a High-Sensitivity Surface Plasmon Resonance Sensor Based on Few-Layer Black Phosphorus.
    Zhu Q; Shen Y; Chen Z; Chen B; Dai E; Pan W
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High thermoelectric performances of monolayer SnSe allotropes.
    Hu ZY; Li KY; Lu Y; Huang Y; Shao XH
    Nanoscale; 2017 Oct; 9(41):16093-16100. PubMed ID: 29038807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity Enhancement in Surface Plasmon Resonance Biochemical Sensor Based on Transition Metal Dichalcogenides/Graphene Heterostructure.
    Zhao X; Huang T; Ping PS; Wu X; Huang P; Pan J; Wu Y; Cheng Z
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29954134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity enhancement of a silver based surface plasmon resonance sensor via an optimizing graphene-dielectric composite structure.
    Wang G; Huang L
    Appl Opt; 2022 Jan; 61(3):683-690. PubMed ID: 35200772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full Thermoelectric Characterization of Stoichiometric Electrodeposited Thin Film Tin Selenide (SnSe).
    Burton MR; Boyle CA; Liu T; McGettrick J; Nandhakumar I; Fenwick O; Carnie MJ
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28232-28238. PubMed ID: 32479049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon resonance biosensor based on hexagonal lattice dual-core photonic crystal fiber.
    Ahmed T; Paul AK; Anower MS; Razzak SMA
    Appl Opt; 2019 Nov; 58(31):8416-8422. PubMed ID: 31873324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tin Selenide (SnSe): Growth, Properties, and Applications.
    Shi W; Gao M; Wei J; Gao J; Fan C; Ashalley E; Li H; Wang Z
    Adv Sci (Weinh); 2018 Apr; 5(4):1700602. PubMed ID: 29721411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical Study to Enhance the Sensitivity of a Surface Plasmon Resonance Sensor with BlueP/WS
    Shivangani ; Alotaibi MF; Al-Hadeethi Y; Lohia P; Singh S; Dwivedi DK; Umar A; Alzayed HM; Algadi H; Baskoutas S
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core.
    Rifat AA; Mahdiraji GA; Chow DM; Shee YG; Ahmed R; Adikan FR
    Sensors (Basel); 2015 May; 15(5):11499-510. PubMed ID: 25996510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Simulation of a Ratiometric SPR Sensor Based on a 2D van der Waals Heterojunction for Refractive Index Measurement.
    Zhou J; Yu X; Zhang L; Liu X; Zeng Y; Zhang X
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential Evolution Particle Swarm Optimization for Phase-Sensitivity Enhancement of Surface Plasmon Resonance Gas Sensor Based on MXene and Blue Phosphorene/Transition Metal Dichalcogenide Hybrid Structure.
    Yue C; Ding Y; Tao L; Zhou S; Guo Y
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling the temperature-dependent thermoelectric properties of the undoped and Na-doped monolayer SnSe allotropes: a comparative study.
    Shi HL; Han QZ; Yang J; Gong LJ; Ren YH; Zhao YH; Yang H; Liu QH; Jiang ZT
    Nanotechnology; 2024 Feb; 35(19):. PubMed ID: 38306692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing Sensitivity in Guided-Wave Surface Plasmon Resonance Sensor through Integration of 2D BlueP/MoS
    Yuan X; Wu L; Qin Y
    Biosensors (Basel); 2023 Dec; 14(1):. PubMed ID: 38248402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.