These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 30621309)

  • 1. Microencapsulation and Nanoencapsulation Using Supercritical Fluid (SCF) Techniques.
    Soh SH; Lee LY
    Pharmaceutics; 2019 Jan; 11(1):. PubMed ID: 30621309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.
    Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS
    Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas.
    Mishima K
    Adv Drug Deliv Rev; 2008 Feb; 60(3):411-32. PubMed ID: 18061302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carotenoids microencapsulation by spray drying method and supercritical micronization.
    Janiszewska-Turak E
    Food Res Int; 2017 Sep; 99(Pt 2):891-901. PubMed ID: 28847426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercritical fluid technology for solubilization of poorly water soluble drugs via micro- and naonosized particle generation.
    Misra SK; Pathak K
    ADMET DMPK; 2020; 8(4):355-374. PubMed ID: 35300190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - A comprehensive review.
    Padrela L; Rodrigues MA; Duarte A; Dias AMA; Braga MEM; de Sousa HC
    Adv Drug Deliv Rev; 2018 Jun; 131():22-78. PubMed ID: 30026127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supercritical fluid technology: a promising approach in pharmaceutical research.
    Girotra P; Singh SK; Nagpal K
    Pharm Dev Technol; 2013 Feb; 18(1):22-38. PubMed ID: 23036159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A critical review on the particle generation and other applications of rapid expansion of supercritical solution.
    Kumar R; Thakur AK; Banerjee N; Chaudhari P
    Int J Pharm; 2021 Oct; 608():121089. PubMed ID: 34530097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supercritical fluid technology: concepts and pharmaceutical applications.
    Deshpande PB; Kumar GA; Kumar AR; Shavi GV; Karthik A; Reddy MS; Udupa N
    PDA J Pharm Sci Technol; 2011; 65(3):333-44. PubMed ID: 22293238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle preparation of pharmaceutical compounds using supercritical antisolvent process: current status and future perspectives.
    Kumar R; Thakur AK; Kali G; Pitchaiah KC; Arya RK; Kulabhi A
    Drug Deliv Transl Res; 2023 Apr; 13(4):946-965. PubMed ID: 36575354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmaceutical Applications of Supercritical Fluid Extraction of Emulsions for Micro-/Nanoparticle Formation.
    Park H; Kim JS; Kim S; Ha ES; Kim MS; Hwang SJ
    Pharmaceutics; 2021 Nov; 13(11):. PubMed ID: 34834343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical evaluation of carbamazepine microparticles produced by the rapid expansion of supercritical solutions and by spray-drying.
    Gosselin P; Lacasse FX; Preda M; Thibert R; Clas SD; McMullen JN
    Pharm Dev Technol; 2003; 8(1):11-20. PubMed ID: 12665193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid Dosage Forms of Biopharmaceuticals in Drug Delivery Systems Using Sustainable Strategies.
    Costa C; Casimiro T; Corvo ML; Aguiar-Ricardo A
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microencapsulation for Pharmaceutical Applications: A Review.
    Yan C; Kim SR
    ACS Appl Bio Mater; 2024 Feb; 7(2):692-710. PubMed ID: 38320297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dense CO₂ as a Solute, Co-Solute or Co-Solvent in Particle Formation Processes: A Review.
    Nunes AVM; Duarte CMM
    Materials (Basel); 2011 Nov; 4(11):2017-2041. PubMed ID: 28824121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of polycaprolactone nanoparticles via supercritical carbon dioxide extraction of emulsions.
    Ajiboye AL; Trivedi V; Mitchell JC
    Drug Deliv Transl Res; 2018 Dec; 8(6):1790-1796. PubMed ID: 28828703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micronization of dihydroartemisinin by rapid expansion of supercritical solutions.
    Chingunpitak J; Puttipipatkhachorn S; Tozuka Y; Moribe K; Yamamoto K
    Drug Dev Ind Pharm; 2008 Jun; 34(6):609-17. PubMed ID: 18568911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous microencapsulation of hydrophilic and lipophilic bioactives in liposomes produced by an ecofriendly supercritical fluid process.
    Tsai WC; Rizvi SSH
    Food Res Int; 2017 Sep; 99(Pt 1):256-262. PubMed ID: 28784482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microencapsulation and characterization of liposomal vesicles using a supercritical fluid process coupled with vacuum-driven cargo loading.
    Tsai WC; Rizvi SSH
    Food Res Int; 2017 Jun; 96():94-102. PubMed ID: 28528112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I: Micronization of neat particles.
    Perrut M; Jung J; Leboeuf F
    Int J Pharm; 2005 Jan; 288(1):3-10. PubMed ID: 15607252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.