These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30621314)

  • 1. Towards Goal-Directed Navigation Through Combining Learning Based Global and Local Planners.
    Zhou X; Gao Y; Guan L
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning.
    Zhou X; Bai T; Gao Y; Han Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30939807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Goal-directed autonomous navigation of mobile robot based on the principle of neuromodulation.
    Wang D; Si W; Luo Y; Wang H; Ma T
    Network; 2019; 30(1-4):79-106. PubMed ID: 31564179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments.
    Mackay AK; Riazuelo L; Montano L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictive hierarchical reinforcement learning for path-efficient mapless navigation with moving target.
    Li H; Luo B; Song W; Yang C
    Neural Netw; 2023 Aug; 165():677-688. PubMed ID: 37385022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Social Robot Navigation Tasks: Combining Machine Learning Techniques and Social Force Model.
    Gil Ó; Garrell A; Sanfeliu A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving efficiency of training a virtual treatment planner network via knowledge-guided deep reinforcement learning for intelligent automatic treatment planning of radiotherapy.
    Shen C; Chen L; Gonzalez Y; Jia X
    Med Phys; 2021 Apr; 48(4):1909-1920. PubMed ID: 33432646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leveraging Expert Demonstration Features for Deep Reinforcement Learning in Floor Cleaning Robot Navigation.
    Cimurs R; Merchán-Cruz EA
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A layered goal-oriented fuzzy motion planning strategy for mobile robot navigation.
    Yang X; Moallem M; Patel RV
    IEEE Trans Syst Man Cybern B Cybern; 2005 Dec; 35(6):1214-24. PubMed ID: 16366247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep reinforcement learning-aided autonomous navigation with landmark generators.
    Wang X; Sun Y; Xie Y; Bin J; Xiao J
    Front Neurorobot; 2023; 17():1200214. PubMed ID: 37674856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcement learning-based dynamic obstacle avoidance and integration of path planning.
    Choi J; Lee G; Lee C
    Intell Serv Robot; 2021; 14(5):663-677. PubMed ID: 34642589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Reinforcement Learning for Indoor Mobile Robot Path Planning.
    Gao J; Ye W; Guo J; Li Z
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Reinforcement Learning for End-to-End Local Motion Planning of Autonomous Aerial Robots in Unknown Outdoor Environments: Real-Time Flight Experiments.
    Doukhi O; Lee DJ
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Impact of LiDAR Configuration on Goal-Based Navigation within a Deep Reinforcement Learning Framework.
    Olayemi KB; Van M; McLoone S; McIlvanna S; Sun Y; Close J; Nguyen NM
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coverage Path Planning Using Reinforcement Learning-Based TSP for hTetran-A Polyabolo-Inspired Self-Reconfigurable Tiling Robot.
    Le AV; Veerajagadheswar P; Thiha Kyaw P; Elara MR; Nhan NHK
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33916995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autonomous Navigation by Mobile Robot with Sensor Fusion Based on Deep Reinforcement Learning.
    Ou Y; Cai Y; Sun Y; Qin T
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assistive Navigation Using Deep Reinforcement Learning Guiding Robot With UWB/Voice Beacons and Semantic Feedbacks for Blind and Visually Impaired People.
    Lu CL; Liu ZY; Huang JT; Huang CI; Wang BH; Chen Y; Wu NH; Wang HC; Giarré L; Kuo PY
    Front Robot AI; 2021; 8():654132. PubMed ID: 34239900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distributed Non-Communicating Multi-Robot Collision Avoidance via Map-Based Deep Reinforcement Learning.
    Chen G; Yao S; Ma J; Pan L; Chen Y; Xu P; Ji J; Chen X
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32867080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principles of goal-directed spatial robot navigation in biomimetic models.
    Milford M; Schulz R
    Philos Trans R Soc Lond B Biol Sci; 2014 Nov; 369(1655):. PubMed ID: 25267826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intelligent inverse treatment planning via deep reinforcement learning, a proof-of-principle study in high dose-rate brachytherapy for cervical cancer.
    Shen C; Gonzalez Y; Klages P; Qin N; Jung H; Chen L; Nguyen D; Jiang SB; Jia X
    Phys Med Biol; 2019 May; 64(11):115013. PubMed ID: 30978709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.