These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 30621395)

  • 41. Preparation and hydrophobicity of biomorphic ZnO/carbon based on a lotus-leaf template.
    Wang T; Chang L; Hatton B; Kong J; Chen G; Jia Y; Xiong D; Wong C
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():310-6. PubMed ID: 25175218
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fabrication of biomimetic superhydrophobic surface using hierarchical polyaniline spheres.
    Dong X; Wang J; Zhao Y; Wang Z; Wang S
    J Nanosci Nanotechnol; 2011 Jun; 11(6):5083-8. PubMed ID: 21770147
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.
    Long J; Fan P; Gong D; Jiang D; Zhang H; Li L; Zhong M
    ACS Appl Mater Interfaces; 2015 May; 7(18):9858-65. PubMed ID: 25906058
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photoinduced reversible topographical changes on diarylethene microcrystalline surfaces with biomimetic wetting properties.
    Nishikawa N; Uyama A; Kamitanaka T; Mayama H; Kojima Y; Yokojima S; Nakamura S; Tsujii K; Uchida K
    Chem Asian J; 2011 Sep; 6(9):2400-6. PubMed ID: 21717577
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Irradiation of poly(tetrafluoroethylene) surfaces by CF4 plasma to achieve robust superhydrophobic and enhanced oleophilic properties for biological applications.
    Salapare HS; Suarez BA; CosiƱero HS; Bacaoco MY; Ramos HJ
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():270-5. PubMed ID: 25491987
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of deposition parameters on the wettability and microstructure of superhydrophobic films with hierarchical micro-nano structures.
    Basu BJ; Manasa J
    J Colloid Interface Sci; 2011 Nov; 363(2):655-62. PubMed ID: 21864844
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaporation of sessile water droplets on superhydrophobic natural lotus and biomimetic polymer surfaces.
    Zhang X; Tan S; Zhao N; Guo X; Zhang X; Zhang Y; Xu J
    Chemphyschem; 2006 Oct; 7(10):2067-70. PubMed ID: 16941559
    [No Abstract]   [Full Text] [Related]  

  • 48. Durable Lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles.
    Ebert D; Bhushan B
    J Colloid Interface Sci; 2012 Feb; 368(1):584-91. PubMed ID: 22062688
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wettability of biomimetic thermally grown aluminum oxide coatings.
    Samad JE; Nychka JA
    Bioinspir Biomim; 2011 Mar; 6(1):016004. PubMed ID: 21252413
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The hydrophobicity of a lotus leaf: a nanomechanical and computational approach.
    Balani K; Batista RG; Lahiri D; Agarwal A
    Nanotechnology; 2009 Jul; 20(30):305707. PubMed ID: 19584417
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microscale mechanism of microstructure, micromorphology and Janus wettability of the banana leaf surface.
    Jiang Y; Duan J; Jiang T; Yang Z
    Micron; 2021 Jul; 146():103073. PubMed ID: 33932752
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiscale Janus Surface Structure of
    Mohd G; Majid K; Lone S
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4690-4698. PubMed ID: 34985254
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A comparison of spreading behaviors of Silwet L-77 on dry and wet lotus leaves.
    Tang X; Dong J; Li X
    J Colloid Interface Sci; 2008 Sep; 325(1):223-7. PubMed ID: 18571664
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature.
    Sun Y; Guo Z
    Nanoscale Horiz; 2019 Jan; 4(1):52-76. PubMed ID: 32254145
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Wettability of soybean (Glycine max L.) leaves by foliar sprays with respect to developmental changes.
    Puente DW; Baur P
    Pest Manag Sci; 2011 Jul; 67(7):798-806. PubMed ID: 21413140
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fabrication, surface properties, and origin of superoleophobicity for a model textured surface.
    Zhao H; Law KY; Sambhy V
    Langmuir; 2011 May; 27(10):5927-35. PubMed ID: 21486088
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion.
    Bhushan B; Jung YC; Koch K
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1894):1631-72. PubMed ID: 19376764
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bioinspired On-Demand Directional Droplet Manipulation Surfaces.
    Kang BS; Choi JS; An JH; Kang SM
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2351-2356. PubMed ID: 36573556
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stability of plasma treated superhydrophobic surfaces under different ambient conditions.
    Chen F; Liu J; Cui Y; Huang S; Song J; Sun J; Xu W; Liu X
    J Colloid Interface Sci; 2016 May; 470():221-228. PubMed ID: 26945118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.