These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 30621595)

  • 1. Cluster expansion of apolipoprotein D (ApoD) genes in teleost fishes.
    Gu L; Xia C
    BMC Evol Biol; 2019 Jan; 19(1):9. PubMed ID: 30621595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications.
    Siegel N; Hoegg S; Salzburger W; Braasch I; Meyer A
    BMC Genomics; 2007 Sep; 8():312. PubMed ID: 17822543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole-genome duplication and the functional diversification of teleost fish hemoglobins.
    Opazo JC; Butts GT; Nery MF; Storz JF; Hoffmann FG
    Mol Biol Evol; 2013 Jan; 30(1):140-53. PubMed ID: 22949522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid diversification of FoxP2 in teleosts through gene duplication in the teleost-specific whole genome duplication event.
    Song X; Wang Y; Tang Y
    PLoS One; 2013; 8(12):e83858. PubMed ID: 24349554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence analyses of the distal-less homeobox gene family in East African cichlid fishes reveal signatures of positive selection.
    Diepeveen ET; Kim FD; Salzburger W
    BMC Evol Biol; 2013 Jul; 13():153. PubMed ID: 23865956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expansion by whole genome duplication and evolution of the sox gene family in teleost fish.
    Voldoire E; Brunet F; Naville M; Volff JN; Galiana D
    PLoS One; 2017; 12(7):e0180936. PubMed ID: 28738066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications.
    Lu J; Peatman E; Tang H; Lewis J; Liu Z
    BMC Genomics; 2012 Jun; 13():246. PubMed ID: 22702965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fate of the duplicated androgen receptor in fishes: a late neofunctionalization event?
    Douard V; Brunet F; Boussau B; Ahrens-Fath I; Vlaeminck-Guillem V; Haendler B; Laudet V; Guiguen Y
    BMC Evol Biol; 2008 Dec; 8():336. PubMed ID: 19094205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative genomic organization and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes.
    Parmar MB; Wright JM
    Genome; 2013 Nov; 56(11):691-701. PubMed ID: 24299108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of the duplicated intracellular lipid-binding protein genes of teleost fishes.
    Venkatachalam AB; Parmar MB; Wright JM
    Mol Genet Genomics; 2017 Aug; 292(4):699-727. PubMed ID: 28389698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acid-binding protein genes of the ancient, air-breathing, ray-finned fish, spotted gar (Lepisosteus oculatus).
    Venkatachalam AB; Fontenot Q; Farrara A; Wright JM
    Comp Biochem Physiol Part D Genomics Proteomics; 2018 Mar; 25():19-25. PubMed ID: 29126085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex Genes Are Preferentially Retained After Whole-Genome Duplication in Teleost Fish.
    Guo B
    J Mol Evol; 2017 Jun; 84(5-6):253-258. PubMed ID: 28492966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication.
    Sato Y; Hashiguchi Y; Nishida M
    BMC Evol Biol; 2009 Jun; 9():127. PubMed ID: 19500364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An independent genome duplication inferred from Hox paralogs in the American paddlefish--a representative basal ray-finned fish and important comparative reference.
    Crow KD; Smith CD; Cheng JF; Wagner GP; Amemiya CT
    Genome Biol Evol; 2012; 4(9):937-53. PubMed ID: 22851613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene loss and evolutionary rates following whole-genome duplication in teleost fishes.
    Brunet FG; Roest Crollius H; Paris M; Aury JM; Gibert P; Jaillon O; Laudet V; Robinson-Rechavi M
    Mol Biol Evol; 2006 Sep; 23(9):1808-16. PubMed ID: 16809621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apolipoprotein D in Lepidoptera: Evolution and functional divergence.
    Zhou Y; Li Y; Li X; Li R; Xu Y; Shi L; Wang H
    Biochem Biophys Res Commun; 2020 May; 526(2):472-478. PubMed ID: 32234238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric evolution in two fish-specifically duplicated receptor tyrosine kinase paralogons involved in teleost coloration.
    Braasch I; Salzburger W; Meyer A
    Mol Biol Evol; 2006 Jun; 23(6):1192-202. PubMed ID: 16547150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enigmatic orthology relationships between Hox clusters of the African butterfly fish and other teleosts following ancient whole-genome duplication.
    Martin KJ; Holland PW
    Mol Biol Evol; 2014 Oct; 31(10):2592-611. PubMed ID: 24974377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The "fish-specific" Hox cluster duplication is coincident with the origin of teleosts.
    Crow KD; Stadler PF; Lynch VJ; Amemiya C; Wagner GP
    Mol Biol Evol; 2006 Jan; 23(1):121-36. PubMed ID: 16162861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-duplication charge evolution of phosphoglucose isomerases in teleost fishes through weak selection on many amino acid sites.
    Sato Y; Nishida M
    BMC Evol Biol; 2007 Oct; 7():204. PubMed ID: 17963532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.