These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 30621695)
1. Do sputum or circulating blood samples reflect the pulmonary transcriptomic differences of COPD patients? A multi-tissue transcriptomic network META-analysis. Faner R; Morrow JD; Casas-Recasens S; Cloonan SM; Noell G; López-Giraldo A; Tal-Singer R; Miller BE; Silverman EK; Agustí A; Hersh CP Respir Res; 2019 Jan; 20(1):5. PubMed ID: 30621695 [TBL] [Abstract][Full Text] [Related]
2. Network-based analysis reveals novel gene signatures in peripheral blood of patients with chronic obstructive pulmonary disease. Obeidat M; Nie Y; Chen V; Shannon CP; Andiappan AK; Lee B; Rotzschke O; Castaldi PJ; Hersh CP; Fishbane N; Ng RT; McManus B; Miller BE; Rennard S; Paré PD; Sin DD Respir Res; 2017 Apr; 18(1):72. PubMed ID: 28438154 [TBL] [Abstract][Full Text] [Related]
3. Identifying a gene expression signature of frequent COPD exacerbations in peripheral blood using network methods. Morrow JD; Qiu W; Chhabra D; Rennard SI; Belloni P; Belousov A; Pillai SG; Hersh CP BMC Med Genomics; 2015 Jan; 8():1. PubMed ID: 25582225 [TBL] [Abstract][Full Text] [Related]
4. Identification of hub genes and key pathways in the emphysema phenotype of COPD. Zuo Q; Wang Y; Yang D; Guo S; Li X; Dong J; Wan C; Shen Y; Wen F Aging (Albany NY); 2021 Feb; 13(4):5120-5135. PubMed ID: 33535173 [TBL] [Abstract][Full Text] [Related]
5. Identifying miRNA Modules and Related Pathways of Chronic Obstructive Pulmonary Disease Associated Emphysema by Weighted Gene Co-Expression Network Analysis. An J; Yang T; Dong J; Liao Z; Wan C; Shen Y; Chen L Int J Chron Obstruct Pulmon Dis; 2021; 16():3119-3130. PubMed ID: 34815668 [TBL] [Abstract][Full Text] [Related]
7. [Study of the clinical phenotype of symptomatic chronic airways disease by hierarchical cluster analysis and two-step cluster analyses]. Ning P; Guo YF; Sun TY; Zhang HS; Chai D; Li XM Zhonghua Nei Ke Za Zhi; 2016 Sep; 55(9):679-83. PubMed ID: 27586974 [TBL] [Abstract][Full Text] [Related]
9. Meta-analysis of peripheral blood gene expression modules for COPD phenotypes. Reinhold D; Morrow JD; Jacobson S; Hu J; Ringel B; Seibold MA; Hersh CP; Kechris KJ; Bowler RP PLoS One; 2017; 12(10):e0185682. PubMed ID: 29016655 [TBL] [Abstract][Full Text] [Related]
10. Possible effects of vascular endothelial growth factor in the pathogenesis of chronic obstructive pulmonary disease. Kanazawa H; Asai K; Hirata K; Yoshikawa J Am J Med; 2003 Apr; 114(5):354-8. PubMed ID: 12714123 [TBL] [Abstract][Full Text] [Related]
11. Genetic regulation of gene expression in the lung identifies CST3 and CD22 as potential causal genes for airflow obstruction. Lamontagne M; Timens W; Hao K; Bossé Y; Laviolette M; Steiling K; Campbell JD; Couture C; Conti M; Sherwood K; Hogg JC; Brandsma CA; van den Berge M; Sandford A; Lam S; Lenburg ME; Spira A; Paré PD; Nickle D; Sin DD; Postma DS Thorax; 2014 Nov; 69(11):997-1004. PubMed ID: 25182044 [TBL] [Abstract][Full Text] [Related]
12. Overexpression Of hsa-miR-664a-3p Is Associated With Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease Via Targeting FHL1. Zhong S; Chen C; Liu N; Yang L; Hu Z; Duan P; Shuai D; Zhang Q; Wang Y Int J Chron Obstruct Pulmon Dis; 2019; 14():2319-2329. PubMed ID: 31632001 [TBL] [Abstract][Full Text] [Related]
13. Variable DNA methylation of aging-related genes is associated with male COPD. Du X; Yuan L; Wu M; Men M; He R; Wang L; Wu S; Xiang Y; Qu X; Liu H; Qin X; Hu C; Qin L; Liu C Respir Res; 2019 Nov; 20(1):243. PubMed ID: 31684967 [TBL] [Abstract][Full Text] [Related]
14. Integrative weighted molecular network construction from transcriptomics and genome wide association data to identify shared genetic biomarkers for COPD and lung cancer. Banaganapalli B; Mallah B; Alghamdi KS; Albaqami WF; Alshaer DS; Alrayes N; Elango R; Shaik NA PLoS One; 2022; 17(10):e0274629. PubMed ID: 36194576 [TBL] [Abstract][Full Text] [Related]
15. Differential DNA methylation marks and gene comethylation of COPD in African-Americans with COPD exacerbations. Busch R; Qiu W; Lasky-Su J; Morrow J; Criner G; DeMeo D Respir Res; 2016 Nov; 17(1):143. PubMed ID: 27814717 [TBL] [Abstract][Full Text] [Related]
16. Sulfatase modifying factor 1 (SUMF1) is associated with Chronic Obstructive Pulmonary Disease. Weidner J; Jarenbäck L; de Jong K; Vonk JM; van den Berge M; Brandsma CA; Boezen HM; Sin D; Bossé Y; Nickle D; Ankerst J; Bjermer L; Postma DS; Faiz A; Tufvesson E Respir Res; 2017 May; 18(1):77. PubMed ID: 28464818 [TBL] [Abstract][Full Text] [Related]
17. [Expression and significance of beta(2)-adrenoreceptor in inflammatory cells of patients with chronic obstructive pulmonary disease]. Zhu WJ; He B; Xu M Zhonghua Yi Xue Za Zhi; 2008 Aug; 88(30):2099-102. PubMed ID: 19080468 [TBL] [Abstract][Full Text] [Related]
18. The matrikine acetyl-proline-glycine-proline and clinical features of COPD: findings from SPIROMICS. Wells JM; Xing D; Viera L; Burkes RM; Wu Y; Bhatt SP; Dransfield MT; Couper DJ; O'Neal W; Hoffman EA; Gaggar A; Barjaktarevic I; Curtis JL; Labaki WW; Han MLK; Freeman CM; Putcha N; Schlange T; Blalock JE; Respir Res; 2019 Nov; 20(1):254. PubMed ID: 31718676 [TBL] [Abstract][Full Text] [Related]
19. Elevated sputum BPIFB1 levels in smokers with chronic obstructive pulmonary disease: a longitudinal study. Gao J; Ohlmeier S; Nieminen P; Toljamo T; Tiitinen S; Kanerva T; Bingle L; Araujo B; Rönty M; Höyhtyä M; Bingle CD; Mazur W; Pulkkinen V Am J Physiol Lung Cell Mol Physiol; 2015 Jul; 309(1):L17-26. PubMed ID: 25979078 [TBL] [Abstract][Full Text] [Related]
20. Association between cytokines in induced sputum and severity of chronic obstructive pulmonary disease. Hacievliyagil SS; Gunen H; Mutlu LC; Karabulut AB; Temel I Respir Med; 2006 May; 100(5):846-54. PubMed ID: 16214322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]