These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30621695)

  • 21. Association between markers of emphysema and more severe chronic obstructive pulmonary disease.
    Boschetto P; Quintavalle S; Zeni E; Leprotti S; Potena A; Ballerin L; Papi A; Palladini G; Luisetti M; Annovazzi L; Iadarola P; De Rosa E; Fabbri LM; Mapp CE
    Thorax; 2006 Dec; 61(12):1037-42. PubMed ID: 16769715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression profiling of miRNA-145 and miRNA-338 in serum and sputum of patients with COPD, asthma, and asthma-COPD overlap syndrome phenotype.
    Lacedonia D; Palladino GP; Foschino-Barbaro MP; Scioscia G; Carpagnano GE
    Int J Chron Obstruct Pulmon Dis; 2017; 12():1811-1817. PubMed ID: 28694694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High mobility group protein B1 (HMGB1) in Asthma: comparison of patients with chronic obstructive pulmonary disease and healthy controls.
    Hou C; Zhao H; Liu L; Li W; Zhou X; Lv Y; Shen X; Liang Z; Cai S; Zou F
    Mol Med; 2011; 17(7-8):807-15. PubMed ID: 21380479
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differentially co-expressed myofibre transcripts associated with abnormal myofibre proportion in chronic obstructive pulmonary disease.
    Chiles JW; Wilson AC; Tindal R; Lavin K; Windham S; Rossiter HB; Casaburi R; Thalacker-Mercer A; Buford TW; Patel R; Wells JM; Bamman MM; Hanaoka BY; Dransfield M; McDonald MN
    J Cachexia Sarcopenia Muscle; 2024 Jun; 15(3):1016-1029. PubMed ID: 38649783
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High Expression of Cathepsin E is Associated with the Severity of Airflow Limitation in Patients with COPD.
    Cao WJ; Li MH; Li JX; Xu X; Ren SX; Rajbanshi B; Xu JF
    COPD; 2016; 13(2):160-6. PubMed ID: 26488201
    [TBL] [Abstract][Full Text] [Related]  

  • 26. COPD phenotype description using principal components analysis.
    Roy K; Smith J; Kolsum U; Borrill Z; Vestbo J; Singh D
    Respir Res; 2009 May; 10(1):41. PubMed ID: 19480658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sputum matrix metalloproteinase-9, tissue inhibitor of metalloprotinease-1, and their molar ratio in patients with chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and healthy subjects.
    Beeh KM; Beier J; Kornmann O; Buhl R
    Respir Med; 2003 Jun; 97(6):634-9. PubMed ID: 12814147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MicroRNA expression in induced sputum of smokers and patients with chronic obstructive pulmonary disease.
    Van Pottelberge GR; Mestdagh P; Bracke KR; Thas O; van Durme YM; Joos GF; Vandesompele J; Brusselle GG
    Am J Respir Crit Care Med; 2011 Apr; 183(7):898-906. PubMed ID: 21037022
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lack of Correlation Between Pulmonary and Systemic Inflammation Markers in Patients with Chronic Obstructive Pulmonary Disease: A Simultaneous, Two-Compartmental Analysis.
    Núñez B; Sauleda J; Garcia-Aymerich J; Noguera A; Monsó E; Gómez F; Barreiro E; Marín A; Antó JM; Agusti A;
    Arch Bronconeumol; 2016 Jul; 52(7):361-7. PubMed ID: 26921918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Metalloproteinase-9/tissue inhibitor of metalloproteinase-1 in induced sputum in patients with asthma and chronic obstructive pulmonary disease and their relationship to airway inflammation and airflow limitation].
    Xin XF; Zhao M; Li ZL; Song Y; Shi Y
    Zhonghua Jie He He Hu Xi Za Zhi; 2007 Mar; 30(3):192-6. PubMed ID: 17572998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A large lung gene expression study identifying IL1B as a novel player in airway inflammation in COPD airway epithelial cells.
    Yi G; Liang M; Li M; Fang X; Liu J; Lai Y; Chen J; Yao W; Feng X; Hu L; Lin C; Zhou X; Liu Z
    Inflamm Res; 2018 Jun; 67(6):539-551. PubMed ID: 29616282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single cell RNA sequencing identifies IGFBP5 and QKI as ciliated epithelial cell genes associated with severe COPD.
    Li X; Noell G; Tabib T; Gregory AD; Trejo Bittar HE; Vats R; Kaminski TW; Sembrat J; Snyder ME; Chandra D; Chen K; Zou C; Zhang Y; Sundd P; McDyer JF; Sciurba F; Rojas M; Lafyatis R; Shapiro SD; Faner R; Nyunoya T
    Respir Res; 2021 Apr; 22(1):100. PubMed ID: 33823868
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrated transcriptomic correlation network analysis identifies COPD molecular determinants.
    Paci P; Fiscon G; Conte F; Licursi V; Morrow J; Hersh C; Cho M; Castaldi P; Glass K; Silverman EK; Farina L
    Sci Rep; 2020 Feb; 10(1):3361. PubMed ID: 32099002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Correlation between expressions of myeloperoxidase and eosinophil cationic protein in sputum and clinical features of asthma-chronic obstructive pulmonary disease overlap].
    Yang H; Zhang Y; Zhang J; Pan J; Wang F; Luo X; Chen F
    Nan Fang Yi Ke Da Xue Xue Bao; 2018 Sep; 38(10):1215-1221. PubMed ID: 30377121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of clinical features between non-smokers with COPD and smokers with COPD: a retrospective observational study.
    Zhang J; Lin XF; Bai CX
    Int J Chron Obstruct Pulmon Dis; 2014; 9():57-63. PubMed ID: 24426780
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence of lower oxidative stress in the air spaces of patients with reversible COPD.
    Serviddio G; Carpagnano GE; Rollo T; Tamborra R; Foschino Barbaro MP; Vendemiale G; Altomare E
    Int J Immunopathol Pharmacol; 2006; 19(3):617-28. PubMed ID: 17026847
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Urokinase-type plasminogen activator system and human cationic antimicrobial protein 18 in serum and induced sputum of patients with chronic obstructive pulmonary disease.
    Jiang Y; Xiao W; Zhang Y; Xing Y
    Respirology; 2010 Aug; 15(6):939-46. PubMed ID: 20624254
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrated Genomics Reveals Convergent Transcriptomic Networks Underlying Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis.
    Kusko RL; Brothers JF; Tedrow J; Pandit K; Huleihel L; Perdomo C; Liu G; Juan-Guardela B; Kass D; Zhang S; Lenburg M; Martinez F; Quackenbush J; Sciurba F; Limper A; Geraci M; Yang I; Schwartz DA; Beane J; Spira A; Kaminski N
    Am J Respir Crit Care Med; 2016 Oct; 194(8):948-960. PubMed ID: 27104832
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA-sequencing across three matched tissues reveals shared and tissue-specific gene expression and pathway signatures of COPD.
    Morrow JD; Chase RP; Parker MM; Glass K; Seo M; Divo M; Owen CA; Castaldi P; DeMeo DL; Silverman EK; Hersh CP
    Respir Res; 2019 Apr; 20(1):65. PubMed ID: 30940135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HOPE-preservation of paraffin-embedded sputum samples--a new way of bioprofiling in COPD.
    Pedersen F; Marwitz S; Seehase S; Kirsten AM; Zabel P; Vollmer E; Rabe KF; Magnussen H; Watz H; Goldmann T
    Respir Med; 2013 Apr; 107(4):587-95. PubMed ID: 23312618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.