BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30621757)

  • 1. Systematic evaluation of C. elegans lincRNAs with CRISPR knockout mutants.
    Wei S; Chen H; Dzakah EE; Yu B; Wang X; Fu T; Li J; Liu L; Fang S; Liu W; Shan G
    Genome Biol; 2019 Jan; 20(1):7. PubMed ID: 30621757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic analysis of long intergenic non-coding RNAs in
    Ishtayeh H; Achache H; Kroizer E; Rappaport Y; Itskovits E; Gingold H; Best C; Rechavi O; Tzur YB
    RNA Biol; 2021 Mar; 18(3):435-445. PubMed ID: 32892705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal expression profiling of long intervening noncoding RNAs in Caenorhabditis elegans.
    Liu W; Yu E; Chen S; Ma X; Lu Y; Liu X
    Sci Rep; 2017 Jul; 7(1):5195. PubMed ID: 28701691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Versatile strategy for isolating transcription activator-like effector nuclease-mediated knockout mutants in Caenorhabditis elegans.
    Sugi T; Sakuma T; Ohtani Y; Yamamoto T
    Dev Growth Differ; 2014 Jan; 56(1):78-85. PubMed ID: 24409999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [CRISPR-Cas9 mediated genome editing in Caenorhabditis elegans].
    Meng X; Zhou H; Xu S
    Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1693-1699. PubMed ID: 29082717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional profiling of long intergenic non-coding RNAs in fission yeast.
    Rodriguez-Lopez M; Anver S; Cotobal C; Kamrad S; Malecki M; Correia-Melo C; Hoti M; Townsend S; Marguerat S; Pong SK; Wu MY; Montemayor L; Howell M; Ralser M; Bähler J
    Elife; 2022 Jan; 11():. PubMed ID: 34984977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conditional knockouts generated by engineered CRISPR-Cas9 endonuclease reveal the roles of coronin in C. elegans neural development.
    Shen Z; Zhang X; Chai Y; Zhu Z; Yi P; Feng G; Li W; Ou G
    Dev Cell; 2014 Sep; 30(5):625-36. PubMed ID: 25155554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Eukaryotic lincRNA Sequences Indicates Signatures of Hindered Translation Linked to Selection Pressure.
    Brümmer A; Dreos R; Marques AC; Bergmann S
    Mol Biol Evol; 2022 Feb; 39(2):. PubMed ID: 34897509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of New β-Conglycinin-Deficient Soybean Lines by Editing the lincRNA
    Song B; Luo T; Fan Y; Li M; Qiu Z; Tian Y; Shang Y; Ma C; Liu C; Cao Q; Peng Y; Xu P; Krishnan HB; Wang Z; Zhang S; Liu S
    J Agric Food Chem; 2024 Jun; ():. PubMed ID: 38907729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Toolkit of Engineered Recombinational Balancers in C. elegans.
    Schwartz HT; Sternberg PW
    Trends Genet; 2018 Apr; 34(4):253-255. PubMed ID: 29395380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Male-specific roles of lincRNA in
    Shabtai R; Tzur YB
    Front Cell Dev Biol; 2023; 11():1115605. PubMed ID: 37035238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery and characterization of long intergenic non-coding RNAs (lincRNA) module biomarkers in prostate cancer: an integrative analysis of RNA-Seq data.
    Cui W; Qian Y; Zhou X; Lin Y; Jiang J; Chen J; Zhao Z; Shen B
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S3. PubMed ID: 26100580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of somatic CRISPR-Cas9 to conditional genome editing in Caenorhabditis elegans.
    Li W; Ou G
    Genesis; 2016 Apr; 54(4):170-81. PubMed ID: 26934570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep RNA Sequencing Uncovers a Repertoire of Human Macrophage Long Intergenic Noncoding RNAs Modulated by Macrophage Activation and Associated With Cardiometabolic Diseases.
    Zhang H; Xue C; Wang Y; Shi J; Zhang X; Li W; Nunez S; Foulkes AS; Lin J; Hinkle CC; Yang W; Morrisey EE; Rader DJ; Li M; Reilly MP
    J Am Heart Assoc; 2017 Nov; 6(11):. PubMed ID: 29133519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans.
    Chen X; Xu F; Zhu C; Ji J; Zhou X; Feng X; Guang S
    Sci Rep; 2014 Dec; 4():7581. PubMed ID: 25531445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9 Methodology for the Generation of Knockout Deletions in
    Au V; Li-Leger E; Raymant G; Flibotte S; Chen G; Martin K; Fernando L; Doell C; Rosell FI; Wang S; Edgley ML; Rougvie AE; Hutter H; Moerman DG
    G3 (Bethesda); 2019 Jan; 9(1):135-144. PubMed ID: 30420468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Microinjection to Generate Genetically Modified Caenorhabditis elegans by CRISPR/Cas9 Editing.
    Iyer J; DeVaul N; Hansen T; Nebenfuehr B
    Methods Mol Biol; 2019; 1874():431-457. PubMed ID: 30353529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the Caenorhabditis elegans genome with CRISPR/Cas9.
    Waaijers S; Boxem M
    Methods; 2014 Aug; 68(3):381-8. PubMed ID: 24685391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide identification of potato long intergenic noncoding RNAs responsive to Pectobacterium carotovorum subspecies brasiliense infection.
    Kwenda S; Birch PR; Moleleki LN
    BMC Genomics; 2016 Aug; 17(1):614. PubMed ID: 27515663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in plants.
    Wang D; Qu Z; Yang L; Zhang Q; Liu ZH; Do T; Adelson DL; Wang ZY; Searle I; Zhu JK
    Plant J; 2017 Apr; 90(1):133-146. PubMed ID: 28106309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.