These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30621783)

  • 1. Open-CSAM, a new tool for semi-automated analysis of myofiber cross-sectional area in regenerating adult skeletal muscle.
    Desgeorges T; Liot S; Lyon S; Bouvière J; Kemmel A; Trignol A; Rousseau D; Chapuis B; Gondin J; Mounier R; Chazaud B; Juban G
    Skelet Muscle; 2019 Jan; 9(1):2. PubMed ID: 30621783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated image segmentation method to analyse skeletal muscle cross section in exercise-induced regenerating myofibers.
    Rahmati M; Rashno A
    Sci Rep; 2021 Oct; 11(1):21327. PubMed ID: 34716401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MuscleJ: a high-content analysis method to study skeletal muscle with a new Fiji tool.
    Mayeuf-Louchart A; Hardy D; Thorel Q; Roux P; Gueniot L; Briand D; Mazeraud A; Bouglé A; Shorte SL; Staels B; Chrétien F; Duez H; Danckaert A
    Skelet Muscle; 2018 Aug; 8(1):25. PubMed ID: 30081940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QuantiMus: A Machine Learning-Based Approach for High Precision Analysis of Skeletal Muscle Morphology.
    Kastenschmidt JM; Ellefsen KL; Mannaa AH; Giebel JJ; Yahia R; Ayer RE; Pham P; Rios R; Vetrone SA; Mozaffar T; Villalta SA
    Front Physiol; 2019; 10():1416. PubMed ID: 31849692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myosoft: An automated muscle histology analysis tool using machine learning algorithm utilizing FIJI/ImageJ software.
    Encarnacion-Rivera L; Foltz S; Hartzell HC; Choo H
    PLoS One; 2020; 15(3):e0229041. PubMed ID: 32130242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MyoSight-semi-automated image analysis of skeletal muscle cross sections.
    Babcock LW; Hanna AD; Agha NH; Hamilton SL
    Skelet Muscle; 2020 Nov; 10(1):33. PubMed ID: 33198807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated cross-sectional analysis of trained, severely atrophied, and recovering rat skeletal muscles using MyoVision 2.0.
    Viggars MR; Wen Y; Peterson CA; Jarvis JC
    J Appl Physiol (1985); 2022 Mar; 132(3):593-610. PubMed ID: 35050795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle.
    Waisman A; Norris AM; Elías Costa M; Kopinke D
    Sci Rep; 2021 Jun; 11(1):11793. PubMed ID: 34083673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A semiautomated measurement of muscle fiber size using the Imaris software.
    Gilda JE; Ko JH; Elfassy AY; Tropp N; Parnis A; Ayalon B; Jhe W; Cohen S
    Am J Physiol Cell Physiol; 2021 Sep; 321(3):C615-C631. PubMed ID: 34319828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dystrophic changes in mdx muscle regenerating from denervation and devascularization.
    Anderson JE
    Muscle Nerve; 1991 Mar; 14(3):268-79. PubMed ID: 2041548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated muscle histopathology analysis using CellProfiler.
    Lau YS; Xu L; Gao Y; Han R
    Skelet Muscle; 2018 Oct; 8(1):32. PubMed ID: 30336774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approach for semi-automated measurement of fiber diameter in murine and canine skeletal muscle.
    Stevens CR; Berenson J; Sledziona M; Moore TP; Dong L; Cheetham J
    PLoS One; 2020; 15(12):e0243163. PubMed ID: 33362264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AxonTracer: a novel ImageJ plugin for automated quantification of axon regeneration in spinal cord tissue.
    Patel A; Li Z; Canete P; Strobl H; Dulin J; Kadoya K; Gibbs D; Poplawski GHD
    BMC Neurosci; 2018 Mar; 19(1):8. PubMed ID: 29523078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pattern of metalloprotease activity and myofiber regeneration in skeletal muscles of mdx mice.
    Bani C; Lagrota-Candido J; Pinheiro DF; Leite PE; Salimena MC; Henriques-Pons A; Quirico-Santos T
    Muscle Nerve; 2008 May; 37(5):583-92. PubMed ID: 18288709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MyoVision: software for automated high-content analysis of skeletal muscle immunohistochemistry.
    Wen Y; Murach KA; Vechetti IJ; Fry CS; Vickery C; Peterson CA; McCarthy JJ; Campbell KS
    J Appl Physiol (1985); 2018 Jan; 124(1):40-51. PubMed ID: 28982947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decrease of myofiber branching via muscle-specific expression of the olfactory receptor mOR23 in dystrophic muscle leads to protection against mechanical stress.
    Pichavant C; Burkholder TJ; Pavlath GK
    Skelet Muscle; 2016; 6():2. PubMed ID: 26798450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The calcineurin signal transduction pathway is essential for successful muscle regeneration in mdx dystrophic mice.
    Stupka N; Gregorevic P; Plant DR; Lynch GS
    Acta Neuropathol; 2004 Apr; 107(4):299-310. PubMed ID: 14727129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SMASH - semi-automatic muscle analysis using segmentation of histology: a MATLAB application.
    Smith LR; Barton ER
    Skelet Muscle; 2014; 4():21. PubMed ID: 25937889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BGP-15 improves contractile function of regenerating soleus muscle.
    Nascimento TL; Silva MT; Miyabara EH
    J Muscle Res Cell Motil; 2018 Apr; 39(1-2):25-34. PubMed ID: 29948663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systemic administration of IGF-I enhances oxidative status and reduces contraction-induced injury in skeletal muscles of mdx dystrophic mice.
    Schertzer JD; Ryall JG; Lynch GS
    Am J Physiol Endocrinol Metab; 2006 Sep; 291(3):E499-505. PubMed ID: 16621899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.