These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 3062181)

  • 1. Crystallographic refinement by simulated annealing. Application to a 2.8 A resolution structure of aspartate aminotransferase.
    Brünger AT
    J Mol Biol; 1988 Oct; 203(3):803-16. PubMed ID: 3062181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refinement of the influenza virus hemagglutinin by simulated annealing.
    Weis WI; Brünger AT; Skehel JJ; Wiley DC
    J Mol Biol; 1990 Apr; 212(4):737-61. PubMed ID: 2329580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray refinement of protein structures by simulated annealing: test of the method on myohemerythrin.
    Kuriyan J; Brünger AT; Karplus M; Hendrickson WA
    Acta Crystallogr A; 1989 Jun; 45 ( Pt 6)():396-409. PubMed ID: 2619971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow-cooling protocols for crystallographic refinement by simulated annealing.
    Brünger AT; Krukowski A; Erickson JW
    Acta Crystallogr A; 1990 Jul; 46 ( Pt 7)():585-93. PubMed ID: 2206482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of molecular dynamics in the crystallographic refinement of colicin A.
    Postma JP; Parker MW; Tsernoglou D
    Acta Crystallogr A; 1989 Jul; 45 ( Pt 7)():471-7. PubMed ID: 2597368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploration of disorder in protein structures by X-ray restrained molecular dynamics.
    Kuriyan J; Osapay K; Burley SK; Brünger AT; Hendrickson WA; Karplus M
    Proteins; 1991; 10(4):340-58. PubMed ID: 1946343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray structure refinement and comparison of three forms of mitochondrial aspartate aminotransferase.
    McPhalen CA; Vincent MG; Jansonius JN
    J Mol Biol; 1992 May; 225(2):495-517. PubMed ID: 1593633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure determination of turkey egg-white lysozyme using Laue diffraction data.
    Howell PL; Almo SC; Parsons MR; Hajdu J; Petsko GA
    Acta Crystallogr B; 1992 Apr; 48 ( Pt 2)():200-7. PubMed ID: 1515108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallographic refinement and structure of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum at 1.7 A resolution.
    Schneider G; Lindqvist Y; Lundqvist T
    J Mol Biol; 1990 Feb; 211(4):989-1008. PubMed ID: 2107319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional structure of aspartate aminotransferase from Escherichia coli at 2.8 A resolution.
    Kamitori S; Hirotsu K; Higuchi T; Kondo K; Inoue K; Kuramitsu S; Kagamiyama H; Higuchi Y; Yasuoka N; Kusunoki M
    J Biochem; 1988 Sep; 104(3):317-8. PubMed ID: 3071527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the closed form of chicken cytosolic aspartate aminotransferase at 1.9 A resolution.
    Malashkevich VN; Strokopytov BV; Borisov VV; Dauter Z; Wilson KS; Torchinsky YM
    J Mol Biol; 1995 Mar; 247(1):111-24. PubMed ID: 7897655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallographic analysis of ribulose 1,5-bisphosphate carboxylase from spinach at 2.4 A resolution. Subunit interactions and active site.
    Knight S; Andersson I; Brändén CI
    J Mol Biol; 1990 Sep; 215(1):113-60. PubMed ID: 2118958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and molecular model refinement of Aspergillus oryzae (TAKA) alpha-amylase: an application of the simulated-annealing method.
    Swift HJ; Brady L; Derewenda ZS; Dodson EJ; Dodson GG; Turkenburg JP; Wilkinson AJ
    Acta Crystallogr B; 1991 Aug; 47 ( Pt 4)():535-44. PubMed ID: 1930835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of Escherichia coli aspartate aminotransferase in two conformations. Comparison of an unliganded open and two liganded closed forms.
    Jäger J; Moser M; Sauder U; Jansonius JN
    J Mol Biol; 1994 Jun; 239(2):285-305. PubMed ID: 8196059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure determination and refinement of homotetrameric hemoglobin from Urechis caupo at 2.5 A resolution.
    Kolatkar PR; Ernst SR; Hackert ML; Ogata CM; Hendrickson WA; Merritt EA; Phizackerley RP
    Acta Crystallogr B; 1992 Apr; 48 ( Pt 2)():191-9. PubMed ID: 1515107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of molecular-replacement phases for the refinement of the human rhinovirus 14 structure.
    Arnold E; Rossmann MG
    Acta Crystallogr A; 1988 May; 44 ( Pt 3)():270-82. PubMed ID: 2856083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of porcine heart cytoplasmic malate dehydrogenase: combining X-ray diffraction and chemical sequence data in structural studies.
    Birktoft JJ; Bradshaw RA; Banaszak LJ
    Biochemistry; 1987 May; 26(10):2722-34. PubMed ID: 3606987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of anisotropy and anharmonicity on protein crystallographic refinement. An evaluation by molecular dynamics.
    Kuriyan J; Petsko GA; Levy RM; Karplus M
    J Mol Biol; 1986 Jul; 190(2):227-54. PubMed ID: 3795269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refined structure of baboon alpha-lactalbumin at 1.7 A resolution. Comparison with C-type lysozyme.
    Acharya KR; Stuart DI; Walker NP; Lewis M; Phillips DC
    J Mol Biol; 1989 Jul; 208(1):99-127. PubMed ID: 2769757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics in refinement against fiber diffraction data.
    Wang H; Stubbs G
    Acta Crystallogr A; 1993 May; 49(3):504-13. PubMed ID: 8129880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.