These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 30622067)

  • 21. Harnessing extremophilic carboxylesterases for applications in polyester depolymerisation and plastic waste recycling.
    Williams GB; Ma H; Khusnutdinova AN; Yakunin AF; Golyshin PN
    Essays Biochem; 2023 Aug; 67(4):715-729. PubMed ID: 37334661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source.
    Nakajima-Kambe T; Onuma F; Kimpara N; Nakahara T
    FEMS Microbiol Lett; 1995 Jun; 129(1):39-42. PubMed ID: 7781989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of PET biodegradation by anchor peptide-cutinase fusion protein.
    Liu Z; Zhang Y; Wu J
    Enzyme Microb Technol; 2022 May; 156():110004. PubMed ID: 35217214
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation of Polyester Polyurethane by Bacterial Polyester Hydrolases.
    Schmidt J; Wei R; Oeser T; Dedavid E Silva LA; Breite D; Schulze A; Zimmermann W
    Polymers (Basel); 2017 Feb; 9(2):. PubMed ID: 30970745
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Deep-Sea Bacterium Is Capable of Degrading Polyurethane.
    Gui Z; Liu G; Liu X; Cai R; Liu R; Sun C
    Microbiol Spectr; 2023 Jun; 11(3):e0007323. PubMed ID: 36995243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface engineering of a cutinase from Thermobifida cellulosilytica for improved polyester hydrolysis.
    Herrero Acero E; Ribitsch D; Dellacher A; Zitzenbacher S; Marold A; Steinkellner G; Gruber K; Schwab H; Guebitz GM
    Biotechnol Bioeng; 2013 Oct; 110(10):2581-90. PubMed ID: 23592055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biodegradation and up-cycling of polyurethanes: Progress, challenges, and prospects.
    Liu J; He J; Xue R; Xu B; Qian X; Xin F; Blank LM; Zhou J; Wei R; Dong W; Jiang M
    Biotechnol Adv; 2021; 48():107730. PubMed ID: 33713745
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradation of polyester polyurethane during commercial composting and analysis of associated fungal communities.
    Zafar U; Nzerem P; Langarica-Fuentes A; Houlden A; Heyworth A; Saiani A; Robson GD
    Bioresour Technol; 2014 Apr; 158():374-7. PubMed ID: 24656620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biodegradation of polyester polyurethane by Aspergillus tubingensis.
    Khan S; Nadir S; Shah ZU; Shah AA; Karunarathna SC; Xu J; Khan A; Munir S; Hasan F
    Environ Pollut; 2017 Jun; 225():469-480. PubMed ID: 28318785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new arylesterase from Pseudomonas pseudoalcaligenes can hydrolyze ionic phthalic polyesters.
    Haernvall K; Zitzenbacher S; Yamamoto M; Schick MB; Ribitsch D; Guebitz GM
    J Biotechnol; 2017 Sep; 257():70-77. PubMed ID: 28237250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Microbial degradation of petroleum-based plastics].
    Xu Y; Yin C; Yue W; Zhou NY
    Sheng Wu Gong Cheng Xue Bao; 2019 Nov; 35(11):2092-2103. PubMed ID: 31814357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Characterization of
    Li G; Liu Z; Zhang Y; Wu J
    Sheng Wu Gong Cheng Xue Bao; 2022 Jan; 38(1):207-216. PubMed ID: 35142131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Breakthrough in polyurethane bio-recycling: An efficient laccase-mediated system for the degradation of different types of polyurethanes.
    Magnin A; Entzmann L; Pollet E; Avérous L
    Waste Manag; 2021 Aug; 132():23-30. PubMed ID: 34304019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Degradation of petroleum-based plastics by microbes and microbial consortia].
    Zhang T; Liu P; Wang Q; Liang Q; Qi Q
    Sheng Wu Gong Cheng Xue Bao; 2021 Oct; 37(10):3520-3534. PubMed ID: 34708608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bio-based polyester-polyurethane foams: synthesis and degradability by Aspergillus niger and Aspergillus clavatus.
    Polo ML; Russell-White K; Vaillard SE; Ríos L; Meira GR; Estenoz DA; Spontón ME
    Biodegradation; 2024 Jun; 35(3):315-327. PubMed ID: 37987936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics.
    Masaki K; Kamini NR; Ikeda H; Iefuji H
    Appl Environ Microbiol; 2005 Nov; 71(11):7548-50. PubMed ID: 16269800
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Depolymerization of the polyester-polyurethane by amidase GatA250 and enhancing the production of 4,4'-methylenedianiline with cutinase LCC.
    Xin K; Lu J; Zeng Q; Zhang T; Liu J; Zhou J; Dong W; Jiang M
    Biotechnol J; 2024 Apr; 19(4):e2300723. PubMed ID: 38622797
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?
    Wei R; Zimmermann W
    Microb Biotechnol; 2017 Nov; 10(6):1308-1322. PubMed ID: 28371373
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Advances in microbial degradation of plastics].
    Liu T; Xin Y; Liu X; Wu B; Xiang M
    Sheng Wu Gong Cheng Xue Bao; 2021 Aug; 37(8):2688-2702. PubMed ID: 34472289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of macromolecular additives to reduce the hydrolytic degradation of polyurethanes by lysosomal enzymes.
    Tang YW; Santerre JP; Labow RS; Taylor DG
    Biomaterials; 1997 Jan; 18(1):37-45. PubMed ID: 9003895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.