These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 30622547)
1. Tobacco, Sunflower and High Biomass SRC Clones Show Potential for Trace Metal Phytoextraction on a Moderately Contaminated Field Site in Belgium. Thijs S; Witters N; Janssen J; Ruttens A; Weyens N; Herzig R; Mench M; Van Slycken S; Meers E; Meiresonne L; Vangronsveld J Front Plant Sci; 2018; 9():1879. PubMed ID: 30622547 [TBL] [Abstract][Full Text] [Related]
2. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake. Janssen J; Weyens N; Croes S; Beckers B; Meiresonne L; Van Peteghem P; Carleer R; Vangronsveld J Int J Phytoremediation; 2015; 17(11):1123-36. PubMed ID: 25942689 [TBL] [Abstract][Full Text] [Related]
3. Limitations for phytoextraction management on metal-polluted soils with poplar short rotation coppice-evidence from a 6-year field trial. Michels E; Annicaerta B; De Moor S; Van Nevel L; De Fraeye M; Meiresonne L; Vangronsveld J; Tack FMG; Ok YS; Meers E Int J Phytoremediation; 2018 Jan; 20(1):8-15. PubMed ID: 27929665 [TBL] [Abstract][Full Text] [Related]
4. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements. Zárubová P; Hejcman M; Vondráčková S; Mrnka L; Száková J; Tlustoš P Environ Sci Pollut Res Int; 2015 Dec; 22(23):18801-13. PubMed ID: 26201656 [TBL] [Abstract][Full Text] [Related]
5. Field evaluation of willow under short rotation coppice for phytomanagement of metal-polluted agricultural soils. Van Slycken S; Witters N; Meiresonne L; Meers E; Ruttens A; Van Peteghem P; Weyens N; Tack FM; Vangronsveld J Int J Phytoremediation; 2013; 15(7):677-89. PubMed ID: 23819267 [TBL] [Abstract][Full Text] [Related]
6. Is the harvest of Salix and Populus clones in the growing season truly advantageous for the phytoextraction of metals from a long-term perspective? Kubátová P; Žilinčíková N; Száková J; Zemanová V; Tlustoš P Sci Total Environ; 2022 Sep; 838(Pt 4):156630. PubMed ID: 35697216 [TBL] [Abstract][Full Text] [Related]
7. Phytoextraction of risk elements by willow and poplar trees. Kacálková L; Tlustoš P; Száková J Int J Phytoremediation; 2015; 17(1-6):414-21. PubMed ID: 25495931 [TBL] [Abstract][Full Text] [Related]
8. Effects of summer and winter harvesting on element phytoextraction efficiency of Salix and Populus clones planted on contaminated soil. Kubátová P; Száková J; Břendová K; Kroulíková-Vondráčková S; Mercl F; Tlustoš P Int J Phytoremediation; 2018 Apr; 20(5):499-506. PubMed ID: 29608377 [TBL] [Abstract][Full Text] [Related]
9. Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils. Ruttens A; Boulet J; Weyens N; Smeets K; Adriaensen K; Meers E; Van Slycken S; Tack F; Meiresonne L; Thewys T; Witters N; Carleer R; Dupae J; Vangronsveld J Int J Phytoremediation; 2011; 13 Suppl 1():194-207. PubMed ID: 22046760 [TBL] [Abstract][Full Text] [Related]
10. Phytoremediation of sewage sludge contaminated by trace elements and organic compounds. Guidi Nissim W; Cincinelli A; Martellini T; Alvisi L; Palm E; Mancuso S; Azzarello E Environ Res; 2018 Jul; 164():356-366. PubMed ID: 29567421 [TBL] [Abstract][Full Text] [Related]
11. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture. II. Vertical distribution and phytoextraction potential. Laureysens I; De Temmerman L; Hastir T; Van Gysel M; Ceulemans R Environ Pollut; 2005 Feb; 133(3):541-51. PubMed ID: 15519729 [TBL] [Abstract][Full Text] [Related]
12. Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments. Pilipović A; Zalesny RS; Rončević S; Nikolić N; Orlović S; Beljin J; Katanić M J Environ Manage; 2019 Jun; 239():352-365. PubMed ID: 30921754 [TBL] [Abstract][Full Text] [Related]
13. Trace element phytoextraction from contaminated soil: a case study under Mediterranean climate. Guidi Nissim W; Palm E; Mancuso S; Azzarello E Environ Sci Pollut Res Int; 2018 Mar; 25(9):9114-9131. PubMed ID: 29340860 [TBL] [Abstract][Full Text] [Related]
14. Evaluating phytoextraction efficiency of two high-biomass crops after soil amendment and inoculation with rhizobacterial strains. Vanessa ÁL; Ángeles PF; Sergio R; Beatriz RG; Rolf H; Markus P; Susan KP Environ Sci Pollut Res Int; 2017 Mar; 24(8):7591-7606. PubMed ID: 28120224 [TBL] [Abstract][Full Text] [Related]
15. Effects of urban wastewater application on growth, biomass, nutrition, and heavy-metal accumulation of Salehi A; Zalesny RS; Calagari M Int J Phytoremediation; 2023; 25(10):1371-1383. PubMed ID: 36597801 [TBL] [Abstract][Full Text] [Related]
16. Assessment of sunflower germplasm for phytoremediation of lead-polluted soil and production of seed oil and seed meal for human and animal consumption. Zehra A; Sahito ZA; Tong W; Tang L; Hamid Y; Khan MB; Ali Z; Naqvi B; Yang X J Environ Sci (China); 2020 Jan; 87():24-38. PubMed ID: 31791497 [TBL] [Abstract][Full Text] [Related]
17. Urban soil phytomanagement for Zn and Cd in situ removal, greening, and Zn-rich biomass production taking care of snail exposure. Grignet A; de Vaufleury A; Papin A; Bert V Environ Sci Pollut Res Int; 2020 Jan; 27(3):3187-3201. PubMed ID: 31838670 [TBL] [Abstract][Full Text] [Related]
18. Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis. Nehnevajova E; Herzig R; Federer G; Erismann KH; Schwitzguébel JP Int J Phytoremediation; 2005; 7(4):337-49. PubMed ID: 16463545 [TBL] [Abstract][Full Text] [Related]
19. Field assessment of trace element phytoextraction by different Guidi Nissim W; Labrecque M Int J Phytoremediation; 2023; 25(3):283-292. PubMed ID: 35605106 [TBL] [Abstract][Full Text] [Related]
20. Trace elements bioavailability to winter wheat (Triticum aestivum L.) grown subsequent to high biomass plants in a greenhouse study. Neu S; Müller I; Herzig R; Dudel EG Int J Phytoremediation; 2018 May; 20(6):574-580. PubMed ID: 29688048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]