These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. Castellarin SD; Di Gaspero G BMC Plant Biol; 2007 Aug; 7():46. PubMed ID: 17760970 [TBL] [Abstract][Full Text] [Related]
6. Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. Castellarin SD; Di Gaspero G; Marconi R; Nonis A; Peterlunger E; Paillard S; Adam-Blondon AF; Testolin R BMC Genomics; 2006 Jan; 7():12. PubMed ID: 16433923 [TBL] [Abstract][Full Text] [Related]
7. An R2R3 MYB transcription factor determines red petal colour in an Actinidia (kiwifruit) hybrid population. Fraser LG; Seal AG; Montefiori M; McGhie TK; Tsang GK; Datson PM; Hilario E; Marsh HE; Dunn JK; Hellens RP; Davies KM; McNeilage MA; De Silva HN; Allan AC BMC Genomics; 2013 Jan; 14():28. PubMed ID: 23324587 [TBL] [Abstract][Full Text] [Related]
8. Flower colour and cytochromes P450. Tanaka Y; Brugliera F Philos Trans R Soc Lond B Biol Sci; 2013 Feb; 368(1612):20120432. PubMed ID: 23297355 [TBL] [Abstract][Full Text] [Related]
9. Functional analysis of Antirrhinum kelloggii flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase genes; critical role in flower color and evolution in the genus Antirrhinum. Ishiguro K; Taniguchi M; Tanaka Y J Plant Res; 2012 May; 125(3):451-6. PubMed ID: 21959781 [TBL] [Abstract][Full Text] [Related]
10. Isolation and functional analysis of a homolog of flavonoid 3',5'-hydroxylase gene from Pericallis × hybrida. Sun Y; Huang H; Meng L; Hu K; Dai SL Physiol Plant; 2013 Oct; 149(2):151-9. PubMed ID: 23397982 [TBL] [Abstract][Full Text] [Related]
11. MYBA and MYBPA transcription factors co-regulate anthocyanin biosynthesis in blue-coloured berries. Karppinen K; Lafferty DJ; Albert NW; Mikkola N; McGhie T; Allan AC; Afzal BM; Häggman H; Espley RV; Jaakola L New Phytol; 2021 Nov; 232(3):1350-1367. PubMed ID: 34351627 [TBL] [Abstract][Full Text] [Related]
12. Flower colour modification of chrysanthemum by suppression of F3'H and overexpression of the exogenous Senecio cruentus F3'5'H gene. He H; Ke H; Keting H; Qiaoyan X; Silan D PLoS One; 2013; 8(11):e74395. PubMed ID: 24250783 [TBL] [Abstract][Full Text] [Related]
13. Cloning, functional identification and sequence analysis of flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase cDNAs reveals independent evolution of flavonoid 3',5'-hydroxylase in the Asteraceae family. Seitz C; Eder C; Deiml B; Kellner S; Martens S; Forkmann G Plant Mol Biol; 2006 Jun; 61(3):365-81. PubMed ID: 16830174 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional Regulation of Anthocyanin Synthesis by MYB-bHLH-WDR Complexes in Kiwifruit ( Liu Y; Ma K; Qi Y; Lv G; Ren X; Liu Z; Ma F J Agric Food Chem; 2021 Mar; 69(12):3677-3691. PubMed ID: 33749265 [TBL] [Abstract][Full Text] [Related]
16. Integrated metabolome and transcriptome analyses of anthocyanin biosynthesis reveal key candidate genes involved in colour variation of Scutellaria baicalensis flowers. Guo F; Guan R; Sun X; Zhang C; Shan C; Liu M; Cui N; Wang P; Lin H BMC Plant Biol; 2023 Dec; 23(1):643. PubMed ID: 38097929 [TBL] [Abstract][Full Text] [Related]
17. Light- and Temperature-Induced Expression of an R2R3-MYB Gene Regulates Anthocyanin Biosynthesis in Red-Fleshed Kiwifruit. Yu M; Man Y; Wang Y Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31652509 [TBL] [Abstract][Full Text] [Related]
18. Integration of Metabolome and Transcriptome Reveals the Relationship of Benzenoid-Phenylpropanoid Pigment and Aroma in Purple Tea Flowers. Mei X; Wan S; Lin C; Zhou C; Hu L; Deng C; Zhang L Front Plant Sci; 2021; 12():762330. PubMed ID: 34887890 [TBL] [Abstract][Full Text] [Related]
19. The red flesh of kiwifruit is differentially controlled by specific activation-repression systems. Wang WQ; Moss SMA; Zeng L; Espley RV; Wang T; Lin-Wang K; Fu BL; Schwinn KE; Allan AC; Yin XR New Phytol; 2022 Jul; 235(2):630-645. PubMed ID: 35348217 [TBL] [Abstract][Full Text] [Related]
20. Expansion and subfunctionalisation of flavonoid 3',5'-hydroxylases in the grapevine lineage. Falginella L; Castellarin SD; Testolin R; Gambetta GA; Morgante M; Di Gaspero G BMC Genomics; 2010 Oct; 11():562. PubMed ID: 20939908 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]