BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 30622845)

  • 1. A comparative study of chemically synthesized and
    Kumar V; Wadhwa R; Kumar N; Maurya PK
    3 Biotech; 2019 Jan; 9(1):7. PubMed ID: 30622845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of silver nanoparticles using tea leaf extract (
    Tran Khac K; Hoang Phu H; Tran Thi H; Dinh Thuy V; Do Thi H
    Heliyon; 2023 Oct; 9(10):e20707. PubMed ID: 37860560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities.
    Aboelfetoh EF; El-Shenody RA; Ghobara MM
    Environ Monit Assess; 2017 Jul; 189(7):349. PubMed ID: 28646435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial and dye degradation application of fungi-assisted silver nanoparticles and utilization of fungal retentate biomass for dye removal.
    Gola D; Tyagi PK; Arya A; Gupta D; Raghav J; Kaushik A; Agarwal M; Chauhan N; Srivastava SK
    Water Environ Res; 2021 Nov; 93(11):2727-2739. PubMed ID: 34415655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lantana camara leaf extract mediated silver nanoparticles: Antibacterial, green catalyst.
    Ajitha B; Ashok Kumar Reddy Y; Shameer S; Rajesh KM; Suneetha Y; Sreedhara Reddy P
    J Photochem Photobiol B; 2015 Aug; 149():84-92. PubMed ID: 26057018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles - A comparative study.
    Kummara S; Patil MB; Uriah T
    Biomed Pharmacother; 2016 Dec; 84():10-21. PubMed ID: 27621034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of silver nanoparticles using a modified Tollens' method in conjunction with phytochemicals and assessment of their antimicrobial activity.
    AbuDalo MA; Al-Mheidat IR; Al-Shurafat AW; Grinham C; Oyanedel-Craver V
    PeerJ; 2019; 7():e6413. PubMed ID: 30775181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuber extract of Arisaema flavum eco-benignly and effectively synthesize silver nanoparticles: Photocatalytic and antibacterial response against multidrug resistant engineered E. coli QH4.
    Rahman AU; Khan AU; Yuan Q; Wei Y; Ahmad A; Ullah S; Khan ZUH; Shams S; Tariq M; Ahmad W
    J Photochem Photobiol B; 2019 Apr; 193():31-38. PubMed ID: 30802773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic, antibacterial and antibiofilm efficacy of biosynthesised silver nanoparticles using Prosopis juliflora leaf extract along with their wound healing potential.
    Arya G; Kumari RM; Sharma N; Gupta N; Kumar A; Chatterjee S; Nimesh S
    J Photochem Photobiol B; 2019 Jan; 190():50-58. PubMed ID: 30472614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green Synthesis of Silver Nanoparticles Using
    Bharadwaj KK; Rabha B; Pati S; Choudhury BK; Sarkar T; Gogoi SK; Kakati N; Baishya D; Kari ZA; Edinur HA
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of multifunctional silver nanoparticles using mangrove plant
    Bhuvaneswari R; Xavier RJ; Arumugam M
    J Parasit Dis; 2017 Mar; 41(1):180-187. PubMed ID: 28316409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caulerpa racemosa: a marine green alga for eco-friendly synthesis of silver nanoparticles and its catalytic degradation of methylene blue.
    Edison TN; Atchudan R; Kamal C; Lee YR
    Bioprocess Biosyst Eng; 2016 Sep; 39(9):1401-8. PubMed ID: 27129459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-efficient photocatalytic deprivation of methylene blue and biological activities of biogenic silver nanoparticles.
    Khan AU; Yuan Q; Wei Y; Khan ZU; Tahir K; Khan SU; Ahmad A; Khan S; Nazir S; Khan FU
    J Photochem Photobiol B; 2016 Jun; 159():49-58. PubMed ID: 27016719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green synthesis of silver nanoparticles using Adhatoda vasica leaf extract and its application in photocatalytic degradation of dyes.
    Chaudhari RK; Shah PA; Shrivastav PS
    Discov Nano; 2023 Oct; 18(1):135. PubMed ID: 37903994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of Silver Nanoparticle Synthesis by Banana Peel Extract Using Statistical Experimental Design, and Testing of their Antibacterial and Antioxidant Properties.
    Rigopoulos N; Thomou E; Kouloumpis Α; Lamprou ER; Petropoulea V; Gournis D; Poulios E; Karantonis HC; Giaouris E
    Curr Pharm Biotechnol; 2019; 20(10):858-873. PubMed ID: 30526454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Process optimization for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties.
    Saxena J; Sharma PK; Sharma MM; Singh A
    Springerplus; 2016; 5(1):861. PubMed ID: 27386310
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Dhaka A; Raj S; Githala CK; Chand Mali S; Trivedi R
    Front Bioeng Biotechnol; 2022; 10():977101. PubMed ID: 36267455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Valorization of mutant Bacillus licheniformis M09 supernatant for green synthesis of silver nanoparticles: photocatalytic dye degradation, antibacterial activity, and cytotoxicity.
    Momin B; Rahman S; Jha N; Annapure US
    Bioprocess Biosyst Eng; 2019 Apr; 42(4):541-553. PubMed ID: 30604009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel green synthesis of silver nanoparticles using soluble starch and its antibacterial activity.
    Yakout SM; Mostafa AA
    Int J Clin Exp Med; 2015; 8(3):3538-44. PubMed ID: 26064246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon resonance allied applications of silver nanoflowers synthesized from
    Ruby ; Aryan ; Mehata MS
    Dalton Trans; 2022 Feb; 51(7):2726-2736. PubMed ID: 35080554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.