These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30623443)

  • 1. The role of physical forces in osteoclastogenesis.
    Ma Q; Ma Z; Liang M; Luo F; Xu J; Dou C; Dong S
    J Cell Physiol; 2019 Aug; 234(8):12498-12507. PubMed ID: 30623443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of microgravity on bone metabolism in vitro and in vivo.
    Loomer PM
    Crit Rev Oral Biol Med; 2001; 12(3):252-61. PubMed ID: 11497376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteoclastogenesis and Osteogenesis during Tooth Movement.
    Baloul SS
    Front Oral Biol; 2016; 18():75-9. PubMed ID: 26599120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level.
    Ren L; Yang P; Wang Z; Zhang J; Ding C; Shang P
    J Mech Behav Biomed Mater; 2015 Oct; 50():104-22. PubMed ID: 26119589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein phosphatase 2A as a new target for downregulating osteoclastogenesis and alleviating titanium particle-induced bone resorption.
    Wang L; Guo X; Zhou W; Ding Y; Shi J; Wu X; Liu Y; Xu Y; Yang H; Geng D
    Acta Biomater; 2018 Jun; 73():488-499. PubMed ID: 29656074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteocyte Mechanobiology.
    Uda Y; Azab E; Sun N; Shi C; Pajevic PD
    Curr Osteoporos Rep; 2017 Aug; 15(4):318-325. PubMed ID: 28612339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aesculin modulates bone metabolism by suppressing receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and transduction signals.
    Zhao XL; Chen LF; Wang Z
    Biochem Biophys Res Commun; 2017 Jun; 488(1):15-21. PubMed ID: 28465233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological basis of bone formation, remodeling, and repair-part III: biomechanical forces.
    Allori AC; Sailon AM; Pan JH; Warren SM
    Tissue Eng Part B Rev; 2008 Sep; 14(3):285-93. PubMed ID: 18707225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of osteoclast-rich and osteoclast-poor osteopetrosis in adult mice sheds light on the role of the osteoclast in coupling bone resorption and bone formation.
    Thudium CS; Moscatelli I; Flores C; Thomsen JS; Brüel A; Gudmann NS; Hauge EM; Karsdal MA; Richter J; Henriksen K
    Calcif Tissue Int; 2014 Jul; 95(1):83-93. PubMed ID: 24838599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased nitric oxide levels stimulate osteoclastogenesis and bone resorption both in vitro and in vivo on the chick chorioallantoic membrane in association with neoangiogenesis.
    Collin-Osdoby P; Rothe L; Bekker S; Anderson F; Osdoby P
    J Bone Miner Res; 2000 Mar; 15(3):474-88. PubMed ID: 10750562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [How is bone formed and resorbed?-- molecular mechanisms of bone formation and resorption].
    Suda T
    Rinsho Byori; 2002 Mar; 50(3):267-72. PubMed ID: 11985054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal compressive force accelerates osteoclastogenesis in RAW264.7 cells.
    Hayakawa T; Yoshimura Y; Kikuiri T; Matsuno M; Hasegawa T; Fukushima K; Shibata K; Deyama Y; Suzuki K; Iida J
    Mol Med Rep; 2015 Oct; 12(4):5879-85. PubMed ID: 26238100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IL-1 plays an important role in the bone metabolism under physiological conditions.
    Lee YM; Fujikado N; Manaka H; Yasuda H; Iwakura Y
    Int Immunol; 2010 Oct; 22(10):805-16. PubMed ID: 20679512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium citrate prevents increased osteoclastogenesis resulting from acidic conditions: Implication for the treatment of postmenopausal bone loss.
    Granchi D; Torreggiani E; Massa A; Caudarella R; Di Pompo G; Baldini N
    PLoS One; 2017; 12(7):e0181230. PubMed ID: 28715463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Prospects of treatment using interferon for bone diseases].
    Iba K; Takada J; Yamashita T
    Nihon Rinsho; 2006 Jul; 64(7):1275-80. PubMed ID: 16838644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RARγ is a negative regulator of osteoclastogenesis.
    Green AC; Poulton IJ; Vrahnas C; Häusler KD; Walkley CR; Wu JY; Martin TJ; Gillespie MT; Chandraratna RA; Quinn JM; Sims NA; Purton LE
    J Steroid Biochem Mol Biol; 2015 Jun; 150():46-53. PubMed ID: 25800721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CYTL1 regulates bone homeostasis in mice by modulating osteogenesis of mesenchymal stem cells and osteoclastogenesis of bone marrow-derived macrophages.
    Shin Y; Won Y; Yang JI; Chun JS
    Cell Death Dis; 2019 Jan; 10(2):47. PubMed ID: 30718470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanobiology of skeletal regeneration.
    Carter DR; Beaupré GS; Giori NJ; Helms JA
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S41-55. PubMed ID: 9917625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focal bone involvement in inflammatory arthritis: the role of IL17.
    Rossini M; Viapiana O; Adami S; Idolazzi L; Fracassi E; Gatti D
    Rheumatol Int; 2016 Apr; 36(4):469-82. PubMed ID: 26521079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone tissue remodeling and development: focus on matrix metalloproteinase functions.
    Paiva KB; Granjeiro JM
    Arch Biochem Biophys; 2014 Nov; 561():74-87. PubMed ID: 25157440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.