BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30623663)

  • 21. Pyrolysis of flame retardant brominated polyester composites.
    Cunliffe AM; Williams PT
    Environ Technol; 2004 Dec; 25(12):1349-56. PubMed ID: 15691195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparison of the fish bioconcentration factors for brominated flame retardants with their nonbrominated analogues.
    Hardy ML
    Environ Toxicol Chem; 2004 Mar; 23(3):656-61. PubMed ID: 15285359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On-line spectroscopic study of brominated flame retardant extraction in supercritical CO
    Xia D; Maurice A; Leybros A; Lee JM; Grandjean A; Gabriel JP
    Chemosphere; 2021 Jan; 263():128282. PubMed ID: 33297226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photodegradation of the novel brominated flame retardant 2,4,6-Tris-(2,4,6-tribromophenoxy)-1,3,5-triazine in solvent system: Kinetics, photolysis products and pathway.
    Lörchner D; Kraus W; Köppen R
    Chemosphere; 2019 Aug; 229():77-85. PubMed ID: 31075705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complete catalytic debromination of hexabromocyclododecane using a silica-supported palladium catalyst in alkaline 2-propanol.
    Ukisu Y
    Chemosphere; 2017 Jul; 179():179-184. PubMed ID: 28365503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Industry-sponsored research on the potential health and environmental effects of selected brominated flame retardants.
    Hardy ML; Biesemeier J; Manor O; Gentit W
    Environ Int; 2003 Sep; 29(6):793-9. PubMed ID: 12850097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TG-MS investigation of brominated products from the degradation of brominated flame retardants in high-impact polystyrene.
    Grause G; Karakita D; Ishibashi J; Kameda T; Bhaskar T; Yoshioka T
    Chemosphere; 2011 Oct; 85(3):368-73. PubMed ID: 21764419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flame retardant concentrations and profiles in wild birds associated with landfill: A critical review.
    Tongue ADW; Reynolds SJ; Fernie KJ; Harrad S
    Environ Pollut; 2019 May; 248():646-658. PubMed ID: 30844700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transformation of 2,2',4,4'-tetrabromodiphenyl ether under UV irradiation: potential sources of the secondary pollutants.
    Wang JZ; Hou Y; Zhang J; Zhu J; Feng YL
    J Hazard Mater; 2013 Dec; 263 Pt 2():778-83. PubMed ID: 24225586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of flame retarded polymers and recycling materials.
    Riess M; Ernst T; Popp R; Müller B; Thoma H; Vierle O; Wolf M; van Eldik R
    Chemosphere; 2000; 40(9-11):937-41. PubMed ID: 10739029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brominated flame retardant: environmental and exposed individuals' health impact.
    Dufour P; Charlier C
    Ann Biol Clin (Paris); 2017 Apr; 75(2):146-157. PubMed ID: 28377327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Addition to "Degradation of the Polymeric Brominated Flame Retardant 'Polymeric FR' by Heat and UV Exposure".
    Koch C; Nachev M; Klein J; Köster D; Schmitz OJ; Schmidt TC; Sures B
    Environ Sci Technol; 2019 Apr; 53(8):4675. PubMed ID: 30916941
    [No Abstract]   [Full Text] [Related]  

  • 33. Analysis of flame retardant additives in polymer fractions of waste of electric and electronic equipment (WEEE) by means of HPLC-UV/MS and GPC-HPLC-UV.
    Schlummer M; Brandl F; Mäurer A; van Eldik R
    J Chromatogr A; 2005 Jan; 1064(1):39-51. PubMed ID: 15729818
    [TBL] [Abstract][Full Text] [Related]  

  • 34. WEEE recycling: Pyrolysis of fire retardant model polymers.
    Luda MP; Euringer N; Moratti U; Zanetti M
    Waste Manag; 2005; 25(2):203-8. PubMed ID: 15737719
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Halogenated flame retardants in the Great Lakes environment.
    Venier M; Salamova A; Hites RA
    Acc Chem Res; 2015 Jul; 48(7):1853-61. PubMed ID: 26050713
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Applications of the in vitro aryl hydrocarbon hydroxylase induction assay for determining "2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents": pyrolyzed brominated flame retardants.
    Zacharewski T; Harris M; Safe S; Thoma H; Hutzinger O
    Toxicology; 1988 Oct; 51(2-3):177-89. PubMed ID: 2845603
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of the effect of brominated flame retardants on hemoglobin oxidation and hemolysis in human erythrocytes.
    Jarosiewicz M; Duchnowicz P; Włuka A; Bukowska B
    Food Chem Toxicol; 2017 Nov; 109(Pt 1):264-271. PubMed ID: 28893619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of brominated, chlorinated, and phosphate flame retardants in San Francisco Bay, an urban estuary.
    Sutton R; Chen D; Sun J; Greig DJ; Wu Y
    Sci Total Environ; 2019 Feb; 652():212-223. PubMed ID: 30366322
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anaerobic biotransformation of two novel brominated flame retardants: Kinetics, isotope fractionation and reaction mechanisms.
    Huang C; Zeng Y; Hu K; Jiang Y; Zhang Y; Lu Q; Liu YE; Gao S; Wang S; Luo X; Mai B
    Water Res; 2023 Sep; 243():120360. PubMed ID: 37481998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Brominated and organophosphate flame retardants in selected consumer products on the Japanese market in 2008.
    Kajiwara N; Noma Y; Takigami H
    J Hazard Mater; 2011 Sep; 192(3):1250-9. PubMed ID: 21783321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.