These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

521 related articles for article (PubMed ID: 30623676)

  • 1. Biomechanical Forces and Oxidative Stress: Implications for Pulmonary Vascular Disease.
    Zemskov EA; Lu Q; Ornatowski W; Klinger CN; Desai AA; Maltepe E; Yuan JX; Wang T; Fineman JR; Black SM
    Antioxid Redox Signal; 2019 Oct; 31(12):819-842. PubMed ID: 30623676
    [No Abstract]   [Full Text] [Related]  

  • 2. Cyclic stretch, reactive oxygen species, and vascular remodeling.
    Birukov KG
    Antioxid Redox Signal; 2009 Jul; 11(7):1651-67. PubMed ID: 19186986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemodynamic regulation of reactive oxygen species: implications for vascular diseases.
    Raaz U; Toh R; Maegdefessel L; Adam M; Nakagami F; Emrich FC; Spin JM; Tsao PS
    Antioxid Redox Signal; 2014 Feb; 20(6):914-28. PubMed ID: 23879326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox-mediated gene therapies for environmental injury: approaches and concepts.
    Engelhardt JF
    Antioxid Redox Signal; 1999; 1(1):5-27. PubMed ID: 11225732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function.
    Tan DQ; Suda T
    Antioxid Redox Signal; 2018 Jul; 29(2):149-168. PubMed ID: 28708000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADPH oxidases in lung health and disease.
    Bernard K; Hecker L; Luckhardt TR; Cheng G; Thannickal VJ
    Antioxid Redox Signal; 2014 Jun; 20(17):2838-53. PubMed ID: 24093231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer.
    Archer SL; Gomberg-Maitland M; Maitland ML; Rich S; Garcia JG; Weir EK
    Am J Physiol Heart Circ Physiol; 2008 Feb; 294(2):H570-8. PubMed ID: 18083891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress in chronic lung disease: From mitochondrial dysfunction to dysregulated redox signaling.
    van der Vliet A; Janssen-Heininger YMW; Anathy V
    Mol Aspects Med; 2018 Oct; 63():59-69. PubMed ID: 30098327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox signaling in cardiovascular pathophysiology: A focus on hydrogen peroxide and vascular smooth muscle cells.
    Byon CH; Heath JM; Chen Y
    Redox Biol; 2016 Oct; 9():244-253. PubMed ID: 27591403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Mitochondria in the Redox Signaling Network and Its Outcomes in High Impact Inflammatory Syndromes.
    Magnani ND; Marchini T; Calabró V; Alvarez S; Evelson P
    Front Endocrinol (Lausanne); 2020; 11():568305. PubMed ID: 33071976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses.
    Farooq MA; Niazi AK; Akhtar J; Saifullah ; Farooq M; Souri Z; Karimi N; Rengel Z
    Plant Physiol Biochem; 2019 Aug; 141():353-369. PubMed ID: 31207496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron homeostasis and oxidative stress: An intimate relationship.
    Galaris D; Barbouti A; Pantopoulos K
    Biochim Biophys Acta Mol Cell Res; 2019 Dec; 1866(12):118535. PubMed ID: 31446062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelial Cell Responses to Biomechanical Forces in Lymphatic Vessels.
    Sabine A; Saygili Demir C; Petrova TV
    Antioxid Redox Signal; 2016 Sep; 25(7):451-65. PubMed ID: 27099026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of hydrogen peroxide in endothelial proliferative responses.
    Stone JR; Collins T
    Endothelium; 2002; 9(4):231-8. PubMed ID: 12572854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease.
    Wiegman CH; Michaeloudes C; Haji G; Narang P; Clarke CJ; Russell KE; Bao W; Pavlidis S; Barnes PJ; Kanerva J; Bittner A; Rao N; Murphy MP; Kirkham PA; Chung KF; Adcock IM;
    J Allergy Clin Immunol; 2015 Sep; 136(3):769-80. PubMed ID: 25828268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Regulation Mechanisms and Interactions Between Reactive Oxygen Species and Mitophagy.
    Fan P; Xie XH; Chen CH; Peng X; Zhang P; Yang C; Wang YT
    DNA Cell Biol; 2019 Jan; 38(1):10-22. PubMed ID: 30556744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of oxidative stress on lung diseases.
    Park HS; Kim SR; Lee YC
    Respirology; 2009 Jan; 14(1):27-38. PubMed ID: 19144046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox regulation of vascular remodeling.
    Karimi Galougahi K; Ashley EA; Ali ZA
    Cell Mol Life Sci; 2016 Jan; 73(2):349-63. PubMed ID: 26483132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay Between Reactive Oxygen/Reactive Nitrogen Species and Metabolism in Vascular Biology and Disease.
    Ushio-Fukai M; Ash D; Nagarkoti S; Belin de Chantemèle EJ; Fulton DJR; Fukai T
    Antioxid Redox Signal; 2021 Jun; 34(16):1319-1354. PubMed ID: 33899493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox signaling in hypertension.
    Paravicini TM; Touyz RM
    Cardiovasc Res; 2006 Jul; 71(2):247-58. PubMed ID: 16765337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.